
A Modular Domain-Specific
Language for Interactive 3D

Visualization

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Visual Computing

eingereicht von

Dominik Scholz, BSc

Matrikelnummer 01527434

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Univ.Prof. Dipl.-Ing. Dr.techn. Eduard Gröller

Mitwirkung: Dipl.-Ing. Harald Steinlechner

Wien, 10. Mai 2021

Dominik Scholz Eduard Gröller

Technische Universität Wien

A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

A Modular Domain-Specific
Language for Interactive 3D

Visualization

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Visual Computing

by

Dominik Scholz, BSc

Registration Number 01527434

to the Faculty of Informatics

at the TU Wien

Advisor: Univ.Prof. Dipl.-Ing. Dr.techn. Eduard Gröller

Assistance: Dipl.-Ing. Harald Steinlechner

Vienna, 10th May, 2021

Dominik Scholz Eduard Gröller

Technische Universität Wien

A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der

Arbeit

Dominik Scholz, BSc

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 10. Mai 2021

Dominik Scholz

v

Acknowledgements

First and foremost, I want to thank Harald Steinlechner for giving me the opportunity
to work on such an exciting project, as well as his guidance and support. I also want to
thank Eduard Gröller for his valuable advice on my thesis.

This thesis was written during the COVID-19 pandemic, which tested everyone’s resilience.
Therefore, I am grateful for all the people that kept me sane during this time. I also
thank my family, which made my whole university endeavour possible in the first place.
And finally, special thanks to my friends who joined and supported me on this adventure.

This work was enabled by the Competence Centre VRVis. VRVis is funded by BMK,
BMDW, Styria, SFG, Tyrol and Vienna Business Agency in the scope of COMET -
Competence Centers for Excellent Technologies (879730) which is managed by FFG.

vii

Kurzfassung

Datenvisualisierung ist ein wichtiger Teil vieler Forschungsgebiete. Die Erstellung von 3D
Visualisierungen ist meistens so komplex, dass dafür Visualisierungsexperten benötigt
werden. In dieser Arbeit stellen wir ein System vor, mit dem Visualisierungen ohne
Fachkentnisse in Computergraphik erstellt werden können. Stattdessen werden Visualisie-
rungen mittels einer domänenspezifischen Sprache definiert. Anwender können mit dieser
Sprache auf einfache Weise selbstständig 3D Visualisierungen erzeugen. Die Sprache
ermöglicht es, alle Aspekte der Visualisierungs-Pipeline, von der Datentransformation bis
zum Rendern, zu konfigurieren. Die Konfiguration der Visualisierungs-Pipeline wird dabei
durch einen Mechanismus ermöglicht, der es erlaubt, Erweiterungsmodule zu definieren.
Unser System enthält auch vordefinierte Module, welche gängige Visualisierungstechniken,
wie etwa Volumen-, oder Punktwolken-Visualisierung, ermöglichen. Zusätzlich können
Anwender neue Module erstellen um andere Visualisierungstechniken zu unterstützen.

Unsere Visualisierungsbeschreibung ist eine deklarative Sprache, welche in einem Klartext-
format definiert wird. Dieses Format erlaubt einen einfachen Austausch sowie Speicherung
von Visualisierungen. Zusätzlich erlaubt es den Einsatz unserer Sprache innerhalb "Com-
putational Notebooks", welche Wissenschaftlern erlauben, Resultate ihrer Arbeit in
replizierbarer Weise zu speichern. Das Format ermöglicht ist außerdem ein weitverbrei-
tetes Austauschformat im Internet, wodurch unsere Visualisierungsbeschreibung leicht
transferiert werden kann.

Interaktivität ist ein weiterer wichtiger Aspekt von 3D Visualisierungen, der auch von
unserer Sprache unterstützt wird. Interaktionen in unserem System erzeugen Nachrichten,
welche die Visualisierung nutzen kann, um sich selbst zu modifizieren. Das Nachrich-
tensystem ermöglicht es außerdem, dynamische Daten zu visualisieren. Modifikationen
an der Visualisierung werden vom System automatisch analysiert, um die tatsächlichen
Änderungen zu berechnen. Daraufhin wird nur der Teil an Grafikbefehlen ausgeführt, der
benötigt wird, um die Änderungen zu bewirken. Mit diesem Ansatz werden Grafikkar-
tenressourcen wie Shader, Buffer und Texturen nur dann aktualisiert, wenn es notwendig
ist. Diese Vorgehensweise erhöht die Renderleistung und verbirgt Implementierungsdetails
vom Nutzer wodurch unser System zugänglicher wird.

ix

Abstract

Visualizing data is an integral part of many scientific disciplines. Due to the complexity
of 3D visualizations, their creation usually requires visualization experts. This thesis
proposes a system for specifying visualizations without requiring in-depth knowledge
about computer graphics. Instead, visualizations are defined in a domain-specific language.
This language enables users to easily create and edit 3D visualizations on their own. The
language provides configuration capabilities for all aspects of the visualization pipeline,
ranging from data transformation up to rendering. Configuring the visualization pipeline
is facilitated through a versatile extension mechanism, allowing the definition of modules.
Pre-defined modules provide a wide range of 3D visualization techniques, such as volumes
or point clouds. Additionally, users can create new modules to support other visualization
techniques.

Our visualization description is a declarative language specified in a human-readable text
format. Due to the text format, visualizations created with our language are simple to store
and share. The format also aids the use of our language inside notebooks, which enables
scientists to persist their computational results in a replicable fashion. Furthermore,
using a text-based format is a natural method for communicating information over the
web. Hence, it makes our visualization description easily transferable.

Interactivity is another crucial aspect of 3D visualization that our language supports.
User events emit messages that the visualization can then use to modify itself. The
message system also makes it possible to visualize dynamic data. Modifications of the
visualizations pass through our system to automatically analyze the changes. Then just
the needed subset of rendering calls to achieve the change execute. With this approach,
GPU resources like shaders, buffers, and textures only update when required. This
strategy enhances rendering performance and hides implementation detail from the user
making the system easier approachable.

xi

Contents

Kurzfassung ix

Abstract xi

Contents xiii

1 Introduction 1

2 Related Work 7
2.1 Domain-Specific Languages for Visualization 7
2.2 Visualization Systems for the Web . 9
2.3 Functional GUI Frameworks on the Web 20
2.4 Visualization Systems for Domain Experts 22

3 Language Design 25
3.1 Design Goals . 25
3.2 Language Definition . 27

4 System Design 29
4.1 Overview . 29
4.2 The Module - an Atomic Unit of Functionality 31
4.3 The Pipeline - a Sequence of Computation 33
4.4 The Model - an immutable Bag of Data 34
4.5 The View - an Interface to the Outer World 35
4.6 The Change-set - a Difference of Models 37
4.7 The Message-queue - an Order of Communication 38

5 Implementation 39
5.1 Computing the Change-set . 40
5.2 Managing Messages . 41
5.3 The Core Module . 43
5.4 Meta Modules . 44
5.5 Guaranteeing a Valid Model . 45
5.6 Path Resolution . 46

xiii

5.7 Module Handling . 47
5.8 Parsing . 54

6 Evaluation 59
6.1 Use-case Study . 60
6.2 Performance Evaluation . 76
6.3 External Evaluation . 87

7 Conclusion 89
7.1 Contribution . 89
7.2 Lessons Learned . 90
7.3 Future Work . 90

List of Figures 91

List of Tables 93

List of Algorithms 95

List of Listings 98

Acronyms 99

Bibliography 101

CHAPTER 1
Introduction

Visualizations - visual representations of data - are vital tools for conveying information.
They create insight and help in detecting otherwise occluded patterns in raw data.
Moreover, visualizations are an excellent method for sharing knowledge. Therefore, they
are a popular choice whenever data is communicated, like in newspapers or presentations.
Classical media often forces visualizations into static views. Computers, on the other
hand, extend visualizations by adding the capability to interact with them. Interactivity
aids in several use cases, for instance, in data exploration, particularly when visualizing
three- or higher-dimensional data. In such cases, no single viewpoint might educate the
viewer about the complete dataset. Solving this problem requires interactive interfaces
that let users manipulate the visualization, for example, by changing camera perspectives
or switching aggregations.

Sharing knowledge is an essential task that interactive visualizations are well-suited for
accomplishing. Therefore, our scientific question is:

What is the easiest way to share an interactive (3D) visualization?

For sharing insight via interactive visualizations between non-computer scientists, low
threshold accessibility is critical. Arguably in today’s age, sharing ideas is prominently
facilitated through the internet. Therefore, this work aims to provide an easy method for
sharing interactive visualizations in web browsers as a platform-independent format.

Numerous visualization libraries already exist in the web ecosystem. A modern family of
languages, comprising Protovis [BH09], D3 [BOH11], and Vega [SRHH15] (Figure 1.1),
showcased the benefits of specifying visualizations for the web declaratively (Chapter 2).
Specifying visualizations in that manner allows users to focus on how visualizations should
look and behave rather than on their particular execution on the computer. Consequently,
such languages enable people without in-depth knowledge of computer graphics to plot
interactive visualizations quickly. Furthermore, Vega demonstrates the advantage of
describing visualizations inside self-contained files. Vega descriptions provide the full

1

1. Introduction

information needed to display an interactive visualization inside a human-readable text
file (JSON). As a result, the file operates as a standardized communication medium for
sharing visualizations.

Figure 1.1: Various charts created with Vega, which uses D3 for rendering.
Source: https://vega.github.io/vega/

Another motivation for our system is the emerging trend of publishing research interac-
tively. For example, researchers from CERN publish papers using their SWAN system
[CER20], and machine learning researchers use the interactive Distill journal [Dis20] for
publications. The idea of combining explanatory text and computation instructions traces
back to the concept of literate programming. Literate programming is a term coined by
Donald Knuth describing the idea of handling computer programs as works of literature
[Knu84]. In that sense, programs should resemble essays of the creator’s thought process
consisting of descriptions in natural language as formatted text annotating the actual
source code. The recently popularized notebook environment [KRKP+16] extended
Knuth’s idea to form literate computing, whose idea is to form "documents integrating

prose, code, and results" [KRKP+16]. These notebook documents then achieve a so-called
computational narrative by combining human language, live code, and its results. In
this regard, notebooks take the original idea of literate programming a step further by
including the computations’ results. Jupyter notebooks focus on the scientific concepts
of collaboration and reproducibility. These concepts are not only essential concepts
among academics, but also in the much broader community of data analysts ranging
from journalists to policymakers [PG15]. Hence, the notebook format has immense
potential for influencing those disciplines. However, in all of those groups, the need of
novice-friendly methods for describing visualizations in textual format arises. Declarative
languages such as Vega-lite can fill this need for 2D visualizations.

Although Protovis, D3, and Vega offer excellent tools for creating 2D visualizations, they
do not support 3D visualizations. Compared to 2D visualizations, 3D visualizations are
even harder to create. Efficient 3D visualizations demand a great focus on optimizations
and low-level concerns such as GPU memory management or state changes. These
concepts require considerable knowledge about computer graphics making the creation of
visualizations for people from other scientific fields challenging.

Many currently used 3D visualization libraries lack custom interaction possibilities. In
general, they mostly only support a basic, predefined set of options for navigating or
interacting with the visualizations. Also declarative languages like VRML or its successor

2

https://vega.github.io/vega/

X3D [Con20] only offer a limited set of interaction primitives without extension possi-
bilities. 3D visualizations encompass a broad range of different visualization techniques
like volumes, point clouds, or flows. These techniques already rely on distinct interaction
methods. Additionally, specific use cases or visualizations outside of these basic categories
often require custom interaction methods. Due to these application-specific needs, it
would be challenging to fit all possible interaction methods inside a single monolithic
library. Instead, a versatile visualization toolbox should offer a mechanism for extending
interaction methods easily. To sum up, in this theses we have the following contributions:

• We formulate a declarative, domain-specific language (DSL) for interactive 3D
visualizations (Chapter 3). Moreover, the language can configure all stages of
the visualization pipeline. The language defines visualization descriptions inside a
human-readable text format. Therefore, users can easily configure the visualization
and create custom interaction capabilities without requiring computer graphics
knowledge (Section 6.1.1).

• We propose a modular system for computing visualizations using this language.
Just as our DSL, our system also leverages declarative design principles, efficient
functional datastructures and enables interfacing with imperative programming
web-APIs. With this approach, the system computes updates to the visualization
using resources sparsely.

• Combining the system and the language, we develop a visualization-creation environ-
ment (see Figure 1.3). This web-based application allows visualization creators to
quickly prototype visualizations and change the parameters of shared visualizations
on the fly.

• Showcasing the language’s expressiveness, we present different demo-visualizations
that highlight various aspects of the system, such as the creation of custom interac-
tions (Section 6.1.1), volume rendering (Section 6.1.2), or the integration of external
libraries (Section 6.1.3). These demos do not require any knowledge of low-level
graphics programming from the user so that people outside the computer-graphics
community can create and configure them.

• Lastly, we show the run-time overhead introduced by our approach compared to
traditional solutions and analyze the performance characteristics (Section 6.2).

3

1. Introduction

(a) An example of the SWAN system, which uses the ROOT framework [BRC+19] in conjunction
with Jupyter notebooks.

(b) An interactive Distill publication from Mordvintsev et al. [MRNL20].

Figure 1.2: Different uses of the notebook environment.
4

F
ig

ur
e

1.
3:

T
he

vi
su

al
iz

at
io

n-
cr

ea
ti

on
en

vi
ro

nm
en

t.
T

he
D

SL
on

th
e

le
ft

de
sc

ri
b

es
th

e
vo

lu
m

e
vi

su
al

iz
at

io
n

on
th

e
ri

gh
t,

w
hi

ch
sh

ow
s

th
e

st
ag

b
ee

tl
e

da
ta

se
t

fr
om

G
rö

lle
r

et
al

.
[G

G
K

05
].

T
ex

tu
al

ch
an

ge
s

in
th

e
D

SL
(l

ef
t)

ar
e

re
fle

ct
ed

in
th

e
vi

su
al

iz
at

io
n

(r
ig

ht
)

an
d

in
te

ra
ct

io
ns

w
it

h
th

e
vi

su
al

iz
at

io
n

au
to

m
at

ic
al

ly
up

da
te

th
e

D
SL

.

5

CHAPTER 2
Related Work

This chapter presents works that directly influenced our visualization design and methods
solving similar problems as our architecture.

In general, there exists a vast number of visualization tools. Hence we first focus on tools
that aim to provide visualization capabilities from a language-centric viewpoint, thus
constitute domain-specific languages.

Next, we highlight a family of languages that focus on the ease of creating declarative
languages for the web, which are therefore easily shareable. Subsequently, we look at
systems for the web that integrate performant recalculations and graphical interfaces.

Lastly, we take a look at systems proposing a solution for similar problem spaces as our
work. Although there are many visualization systems for domain experts. This sections
focuses on two particular visualization systems that are similar to our approach and also
enable visualization designers to create custom applications for domain experts without
computer graphics or visualization knowledge.

2.1 Domain-Specific Languages for Visualization

Domain-Specific Languages (DSLs) are programming languages constructed around a
specific domain. In contrast to general-purpose languages, the aim of DSLs is not to
offer a language that can be universally applied for a broad range of problems, but
to focus on a small, well-defined set of problems and handle those in an expressive
manner. Rautek et al. identifies a hierarchy of possibilities interfacing with applications
(see Figure 2.1) [RBGH14]. The interfaces in the hierarchy are ordered by increasing
flexibility and required experience. The range starts with turn-key systems, which are
applications exposing only some parameters to the user, often through graphical interfaces.
They allow the use and configuration with minor user experience. At the end of the
range, direct modifications in source code and the use of libraries are located, requiring

7

2. Related Work

expert programmers. In this hierarchy, DSLs bridge the gap between the two extremes:
little experience/low flexibility and high experience/maximum flexibility. Hence, the
general application area for DSLs lies in providing an interface for high-level application
programmers (instead of rendering experts) as well as domain experts and scientists with
basic programming knowledge.

turn-key systems

source code and libraries

DSLs

re
q

u
ir

e
d

e
xp

e
ri

e
n

ce

novice

intermediate user

expert user

expert programmer

Figure 2.1: Experience hierarchy of configurable software.
Source: [RBGH14]

DSLs for visualization already exist for quite some time, with Elliot and Hudak [EH97]
as well as Stolte et al. [STH02] being noteworthy mentions. The following sections cover
modern DSLs, that draw inspiration from these early approaches.

2.1.1 VisLang

VisLang is a system for integrating multiple DSLs into a common visualization application.
Supporting multiple DSLs enables the use of different programming paradigms in the
same environment. Therefore, the best-suited programming paradigm for the current task
can be selected. Whereas declarative languages, like D3 [BOH11] and Vega [SRHH15],
are popular for specifying layouts and structure, imperative languages might be better
suited for rendering applications or functional languages for streamlined signal processing.

program editor interactive interpretation and visualization

resources

vi
sl

a
n
g
 r

u
n
tim

e

...

...

renderer void updateRendering(float x) {

 // use slang renderer

 using renderer:

 focus = value > x;

 using;

}

//assign trigger

float x -> updateRendering(x);

slangs

x = 0; x = 0.05; x = 0.1; x = 0.2;

Figure 2.2: Example of how slangs (left) interact through the vislang runtime with the
program editor (middle) to produce an interative visualization (right).
Source: [RBGH14]

To the user, the VisLang runtime appears as a unified programming environment for
all the integrated DSLs. These DSLs, which are extending VisLang, are called slangs.
Users can access these slangs by stating the using keyword (see Figure 2.2) followed by

8

2.2. Visualization Systems for the Web

the name of the slang. Inside this using scope, the slang’s language is active. In the
example shown in Figure 2.2, the slang renderer allows changing visualization parameters.
The encapsulating function updateRendering is defined, and assigned as a trigger to
the variable x. In that way, when the user changes x, the updateRendering function
is executing changing the focus value inside the renderer slang. This mechanism lets
the user tune the visualization by exploring different values for x and observing the
visualization’s live updates (Figure 2.2 right).

Rautek et al. showcase the flexibility of VisLang by presenting three different slangs
with distinctive programming paradigms. The Volume Predicate slang is a procedural
language, that can specify logical queries on a 3D voxel data structure resulting in a set
of binary voxels. Vlabel Visualization is a declarative slang, which gets compiled to
an OpenCL program. It takes a volume and a label as input with which the user can
specify the appearance of the volume declaratively. Lastly, the Map-Reduce slang is a
functional language providing the user with a way to efficiently perform volumetric
queries on the GPU, like the counting of voxels emitted from the Volume Predicate slang.

Usually, the process of creating novel DSLs is rather intricate. It requires lexing, parsing,
generation of an abstract syntax tree, and finally interpretation of the DSL. Therefore,
VisLang offers an extension mechanism using a meta-language. This language makes it
possible to specify new slangs by stating parameters and grammar rules. Additionally,
the meta-language also features an inheritance/template mechanism.

2.2 Visualization Systems for the Web

2.2.1 ProtoVis

ProtoVis [BH09][HB10] is a tool for streamlining the creation of visualizations. Modern
charting software allows users to import data and quickly create diagrams for it from
a predefined set via user interfaces. These predefined chart types, however, are highly
limited. When custom visualizations, outside of this predefined set, are needed, users
often resort to creating them manually in vector-graphics drawing applications. This
process is time-consuming, and the static visualization prohibits interactivity as well as
the ability to update it with live data. ProtoVis presents a solution that lies between
those two extremes by enabling quick charting while providing maximum flexibility and
retaining interactivity. ProtoVis is a declarative DSL for interactive visualization. Thus
it describes what visualizations should look like instead of defining how they should
be computed. This declarative approach splits the specification from the execution,
permitting various optimizations in the needed translation step. Heer and Bostock note
that previous declarative DSLs like ggplot2 [Wil12][Wic10] or VizQL [STH02] feature
high levels of abstraction, enabling fast data analysis, but do not support precise control
over graphics and interaction. ProtoVis is an embedded DSL. Therefore, it is not a
standalone language but programmed and used from within a host language. The original
ProtoVis implementation was done in JavaScript [BH09], followed by an implementation
in Java by the same authors [HB10]. ProtoVis constructs visualizations by combining

9

2. Related Work

graphical marks hierarchically. Graphical marks are simple, visual primitives like lines,
bars, or labels (see Figure 2.3). Optionally, marks can specify anchors, which are named
positions that can be referred to by related marks. Marks are placed inside panels that
can be positioned and replicated. The marks encode data through dynamic properties
such as color, position, or size. The data is provided to the marks and then delegated to
the properties by calling the data() function.

f g h

dcba

e

Figure 2.3: Examples of graphical marks from ProtoVis: (a-h) Area, Bar, Dot, Image,
Line, Label (and Bar), Rule (and Bar), Wedge.
Source: [HB10]

Encoding is provided by anonymous functions (or static variables) that determine the
properties’ value — describing these properties in such a way results in a call chain,
which gets translated into a scene graph. This chaining results in the capability of
properties to depend on each other’s value. Property functions can access information
through various built-in variables as well as global and bound variables inside the current
scope. Important built-in variables are: The this object, referring to the scene graph
in general, the parent object referencing the panel containing the current mark, and
the sibling object, referencing the previous panel. Event handlers can be specified
to include interactivity. These event handlers listen to user interactions and execute a
function that can change properties of the interacted mark by using the this keyword
as displayed in Figure 2.4. New mark types can be created from existing mark types
by using prototypical inheritance. This mechanism allows new mark types to retain the
general functionality of the base type and only override or add the new functions.

The Java implementation of ProtoVis differs from the JavaScript implementation in that
it does not support anonymous functions directly. For that reason, every property type

10

2.2. Visualization Systems for the Web

var vis = new pv.Panel().width(w).height(h);

vis.add(pv.Bar)

.data(someData)

.left(() => this.index * 5)

.bottom(0)

.width(3)

.height(d => d.y * 50)

.def("i", -1)

.fillStyle(() => i == this.index ? "0xff0000" : "0x1f77b4")

.event("mouseover", () => i(this.index))

.event("mouseout", () => i(-1))

vis.render();

(a)

Scene vis = new Scene().width(w).height(h).scene()

vis.add("Bar")

.data(someData).datatype(Point2D.class)

.left("{{index * 5}}")

.bottom(0)

.width(3)

.height("{{data.getY() * 50}}")

.def("i", -1)

.fill("{{Fill.solid(i == index ? 0xff0000 : 0x1f77b4)}}")

.mouseover("{{i(index).update()}}")

.mouseout("{{i(-1).update()}}");

vis.update();

(b)

Figure 2.4: Example definition of a simple, interactive bar chart using ProtoVis JavaScript
(a) and Java (b).
Sources: [BH09][HB10]

requires the creation of a class implementing the Property interface. To provide the
same ease of writing property functions as in the JavaScript implementation, ProtoVis
Java offers users a simpler alternative: Anonymous property functions are passed as
strings to the property function call. The string contains regular Java code enclosed by
double curly brackets. This code permits omitting the return statement. Additionally,
variables like data and index are in scope, with the former referencing the complete

11

2. Related Work

provided data object and the latter referring to the index of the current graphical mark.
This data object does not have to be a static array but can be an arbitrary object
implementing the Iterable interface, allowing high flexibility in the choice and structure
of the provided data.

From an implementation standpoint, the creation of visualizations with ProtoVis follows
a pipeline containing six successive stages: Bind, Build, Evaluate, Interpolate, Ren-
der, and Event. At first, the Bind stage traverses the specifications of the graphical
marks. In this step, property definitions of each mark are resolved. Three different types
of properties are distinguished: constant properties just have a static property value,
compiled properties refer to predefined compiled functions, and dynamic properties, which
use the string specification of anonymous functions and have to be either interpreted
or compiled before the property evaluation. Similar to the prototype inheritance in the
JavaScript version, ProtoVis Java traverses the inheritance hierarchy of the marks to find
inherited property definitions. If the encountered mark is the first one of its type found
by the build process, ProtoVis constructs an Evaluator for the mark. This evaluator is
capable of compiling dynamic properties on-the-fly if the platform running ProtoVis offers
compiler access or interpretation if it does not. Next is the Build phase. Its purpose
is the creation of the scene graph. For this, ProtoVis iterates through the provided
data and emits an associated scene graph node for every data point. Subsequently, the
Evaluate stage starts. In this stage, the properties’ values for every scene graph node is
calculated by executing the property function. The Interpolate stage comes next. Here,
ProtoVis interpolates property values for scene graph nodes that are part of animations.
Afterwards comes the Render stage. In this stage, ProtoVis renders the scene graph
with all of its nodes to a display. The actual rendering code is accessed through an
interface, which lets ProtoVis provide different platform-specific renderers. The final
stage is the Event stage, where interaction events for registered callback functions are
triggered so that the visualization is able to react to user interaction. To speed up the
pipeline processing, ProtoVis utilized parallelization for the build and evaluate stages.

Summarizing, ProtoVis offers a declarative approach of specifying visualizations. This
gives advantages such as an intuitive and concise specification but results in higher
pre-processing work than direct draw calls in conventional visualization programming.

2.2.2 Data-Driven Documents

Data-Driven Documents (D3) is a popular tool for 2D visualization on the web. It is
based on its predecessor ProtoVis [BH09][HB10], a declarative DSL. As mentioned in
Section 2.2.1, ProtoVis uses abstraction concepts called graphical marks, like a Line

or Wedge. These marks describe the visual appearance of diagrams. They can be
adapted using inheritance in a prototype-pattern fashion, resulting in highly reusable
components. D3 does not follow this design idiom. Instead, D3 works much like document
transformation tools, like jQuery [Fjc21] or XSLT [W3C17], working directly on the
underlying document primitives. As D3 is a JavaScript library for the usual web stack,
these primitives are DOM nodes. In practice, these DOM nodes are usually either

12

2.2. Visualization Systems for the Web

common HTML nodes directly or SVG nodes, which are also XML based and can be
integrated into HTML documents and, therefore, into the DOM. Utilizing this native
representation directly, instead of an abstractly defined scene graph, allows the use of
basic, already existing tooling and debugging capabilities like the developer tools of
modern browsers, as well as preexisting documentation of the underlying primitives—in
the case of D3 HTML and SVG elements.

D3’s main entry point is the selection with either the select or selectAll functions
called on the library’s namespace d3. This command takes a selection predicate using
the W3C Selection API as input. CSS and jQuery also use the same API. The selection
call returns an object encapsulating the specified nodes. Operators like style, attr, or
html are called on this encapsulating object to change the appropriate property of the
selected nodes. The selection object also enables the execution of an integral part of D3:
Data joins. Data joins bind arbitrary data, bundled in an array, with the selected nodes.
The bound data is then passed through functional operators with the first parameter
being the whole data array, and the second being the index of the node. With this setup,
it is easy to define expressive access functions to the dataset that, for example, transform
the data to another range. These access functions are then used in the before mentioned
operator calls that modify the properties of the nodes. If the underlying data changes,
the nodes are updated dynamically to reflect the new state. For this, three sub-selections
are created for which handlers are executed: update is called on data-node pairs, for
which the data is changed, enter is called on incoming data, which does not yet have a
corresponding node, and exit is called on nodes, which do not have corresponding data
items after the update. The enter callback emits new placeholder nodes, which can be
added using the insert or append function, while the exit callback returns a list of
the nodes that now do not have related data so they can be removed from the DOM.
If a node selection is supplied with data—that is, after a data join—it can be further
refined using the filter or sort calls, which update the selection according to the
node’s corresponding data values.

For the interactivity of the visualization, D3 exposes the typical native interaction events
on the DOM nodes through the on callback. When a user interacts with a DOM node,
the corresponding functions are executed for every node. D3 passes the event type as well
as the complete data array and the node’s index to these callbacks, allowing visualization
or data changes. It is possible to define animations that act on such data changes using
the transition operator. This operator enables the definition of new attributes or
style values for the nodes. Additionally, delay, duration, and easing functions, similar to
the specification of animations in CSS, are configurable. When transitioning between
values, so-called interpolators can change how the numbers are interpolated. For example,
an interpolator might interpolate coordinates not in a Cartesian coordinate system, but in
a polar coordinate system. Bostock et al. [BOH11] note that by using their unified timer
queue for scheduling transitions, it “easily scales to thousands of concurrent timers”.

On top of D3’s kernel, modules provide reusable components for commonly used tasks.
One such module, shapes, is used to provide specialized shapes like the graphical primitives

13

2. Related Work

of ProtoVis. This module supports the creation of parameterized shapes that do not
directly correspond to native SVG nodes but are implemented by path elements with a
customized d attribute. Examples for such shapes include arcs, areas, lines, or scatter-plot
symbols. The scale module extends the interpolators by providing a structured way of
defining different scales such as linear, logarithmic, or ordinal ones. Another module is
the layouts module, which provides a spatial ordering for the applied nodes. For example,
the force layout can be used for self-arranging node-link diagrams by calculating physical
force relaxation for the nodes. The stacked layout provides the calculations for stacking
nodes on top of each other, according to a common baseline. Lastly, the behaviors module
eases the implementation of common interaction techniques such as zooming or panning.

In comparison with its predecessor ProtoVis, D3’s general design is not based on the
specification of static scene graphs in a declarative language but instead uses the DOM
as a native scene graph for which D3 specifies transformations. This type of specification
gives information over the dependence structure of the nodes’ properties, leading to
a system where only the data items and nodes that changed their values need to be
updated. This stands in stark contrast to ProtoVis, where all nodes have to be updated.
In D3, this efficient update system is the reason for making the animation system
possible. The declarative notation of the scene graph in ProtoVis also has another
drawback. The abstract declaration of the scene graph has to be interpreted, and the

(a)

new pv.Panel()

.data([[1, 1.2, 1.7, 1.5, .7]])

.width(150)

.height(150)

.add(pv.Wedge)

.data(pv.normalize)

.left(75)

.bottom(75)

.outerRadius(70)

.angle(function(d) d * 2 * Math.PI)

.root.render();

(b)

d3.select("body").append("svg:svg")

.data([[1, 1.2, 1.7, 1.5, .7]])

.attr("width", 150)

.attr("height", 150)

.selectAll("path")

.data(d3.layout.pie())

.enter().append("svg:path")

.attr("transform", "translate(75,75)")

.attr("d", d3.svg.arc().outerRadius(70));

Figure 2.5: Comparison of drawing a simple pie chart in ProtoVis (a) and D3 (b).
Source: [BOH11]

14

2.2. Visualization Systems for the Web

properties of the nodes evaluated by following the prototype chain of graphical marks.
In ProtoVis, this evaluation is delayed to the rendering phase of the system. Instead, D3
evaluates operator calls like attr immediately, reducing the internal control flow and
computational overhead of the system. [BOH11]

In summary, D3 offers a novel system for displaying visualization integrating directly
to the existing web stack ecosystem because it relies on the DOM as a scene graph.
Additionally, the choice of declaring data transformations leads to more efficient handling
of data changes than previous work.

2.2.3 Vega

Vega [SWH14] is a declarative system for interactive visualizations written in JavaScript,
which is built on top of the results of ProtoVis and D3. It provides a visualization

grammar, which is a JSON based format for specifying interactive visualizations (see
Figure 2.6). As in ProtoVis, Vega uses hierarchical graphical marks with associated
properties to construct a scene graph that is later rendered. Vega’s default render-target
is the HTML5 canvas, but it also supports rendering to SVG or server-side rendering.
Rendering Vega facilitates D3 in the back. Therefore Vega can be seen as a high-level
specification language on top of the low-level D3 framework. In the same vein as ProtoVis,
Vega’s specification of graphical marks describes how data tuples translate into the mark’s
properties. Other than in ProtoVis, however, the specification does not rely on anonymous
functions, but is entirely described by the static visualization grammar. Vega also follows
a bind-build-evaluate pipeline like in ProtoVis. Hence, it traverses the marks specified in
the visualization grammar and evaluates their properties along the way. This happens in
the build and evaluate stages. Like in D3, the process of emitting one mark for every data
tuple is called a data-join. Additionally, Vega sets a status-flag on each mark, depending
on whether the associated data tuple was added, removed, or updated.

Reactive Vega

Interactivity in Vega is handled differently to previous declarative models. These previous
models often enable interactivity in an imperative approach by handling event callbacks.
As a result, users often have to deal with interaction execution details, which quickly
becomes an error-prone and complex endeavor. For this reason, Vega treats interaction
primitives as first-class-citizens. The following interactivity paradigm is introduced in
Reactive Vega [SRHH15], which is now part of the main Vega project. Reactive Vega
proposes a system architecture for data streaming that draws from previous works in
streaming databases and Event-Driven Functional Reactive Programming (E-FRP). This
architecture bundles interaction events together with the raw data for the visualization
and exposes them under a uniform interface of data streams.

E-FRP [WTH01], popularized by GUI frameworks like Elm [CC13], is a paradigm for
modeling value changes using streams. These streams are ongoing sequences of events.
Further, streams can be composed into signals to build expressions that react to events.

15

2. Related Work

{ "data": [{"name": "table", "url": "data/letter_counts.json"}],

"scales": [{

"name": "x", "type": "ordinal", "range": "width",

"domain": {"data": "table", "field": "data.letter"}

}, {

"name": "y", "type": "linear", "range": "height",

"domain": {"data": "table", "field": "data.count"}

}],

"axes": [

{"type": "x", "scale": "x"},

{"type": "y", "scale": "y"}

],

"marks": [{

"type": "rect", "from": {"data": "table"},

"properties": { "update": {

"x": {"scale": "x", "field": "data.letter"},

"width": {"scale": "x", "band": true, "offset": -1},

"y": {"scale": "y", "field": "data.count"},

"y2": {"scale": "y", "value": 0},

"fill": {"value": "steelblue"}

}

}

}]}

Figure 2.6: Vega specification of a bar chart. The data is referenced through an a URL.
The scales and marks fields define how data is mapped to the visual representation.
Source: [SWH14]

Combining signals into expressions forms new dependent signals. E-FRP systems create
a dataflow dependency graph encoding these dependent relations. New events enter the
streams and travel through the dependency graph to dependent signals, which trigger
automatic reevaluations of their values and forward them to further dependent signals of
their own. When a new event is fired, two sequential phases occur: In the first phase,
the system carries out all computations depending on the previous state. The second
phase then updates the state of the computation.

Vega calls its dependency graph dataflow graph. In this graph, data tuples travel between
nodes, which potentially alter the data along the way. Reactive Vega parses the input
data for the visualization and creates a branch in the dataflow graph for every dataset
definition. The branches start with an input node, followed by data transformation
operators and ending in an output node. Raw data tuples, flagged by their status flag
with either added, modified, or removed, start at the input node of this branch, and
after application of data transformations leave the branch as data tuples in the output
node. Data transformations are able to derive new data tuples. These derived tuples can
access the original tuples from which they originated by using prototypal inheritance.
Additionally, when data transformations change tuple attributes, the previous values are
stored inside the previous object. This is used because some transformation operators
require access to the previous values. For example, when calculating a running average,
the operator might subtract the previous value of a tuple attribute while adding the new
one to the aggregate.

16

2.2. Visualization Systems for the Web

For handling interactions, Reactive Vega populates the dataflow graph with event listener
nodes, that are listening to primitive JavaScript events such as mousedown and mouseup,
that are declared in the visualization grammar. These event listener nodes are then
connected to dependent signals, which are specified by event selectors [SWH14]. Event
selectors are inspired by CSS3 selectors and enable streams of events to be filtered. Event
selectors reference the respective primitive events by their names. If the selector should
only apply to events emitted from a specific mark, it can be prepended by a colon. An
example of a selector referencing mouse events on a rect mark is rect:mousemove (see
Figure 2.7a). This selector gives a stream of mousemove events that are emitted from a
rect mark. Selectors can also join streams with the ","-operator (Figure 2.7b). Together
with the square brackets ([]), which can filter the stream according to properties, and the
> operator bounding events for a stream can be defined (see Figure 2.7c). For example,
the selector [mousedown, mouseup] > mousemove filters a stream of mousemove
events so that the resulting stream only contains mousemove events, which happen
between a mousedown and a mouseup event. Additionally, it is possible to filter
streams temporally by providing a minimum and maximum time in curly brackets. For
example, the event selector mousemove3ms,5ms contains mousemove events that are
at least 3ms and at most 5ms apart (Figure 2.7d). If such event selectors are used,
Vega automatically creates anonymous signals that serve as gatekeepers by ensuring the
selector’s predicate and only passing the filtered events.

As mentioned before, Vega’s scene graph creation is highly inspired by ProtoVis. As
Vega’s visualization description is static and does not feature functions, it compiles
encoding functions for every property when traversing the mark hierarchy in the bind

stage. The build stage performs a data join emitting a mark instance to the scene graph
for every data tuple. Like in ProtoVis, the evaluate stage is then able to run the encoding
functions created in the bind stage. In an additional stage, Vega computes the bounding
boxes of generated marks. The resulting scene graph elements are represented as data
tuples, which means they themselves can be passed through the dataflow graph where
other marks can take them as input. This concept is called reactive geometry. It allows,
for example, labels to position themselves on the top of the rectangles from a bar chart by
taking the top position of the respective bar as input. It also enables higher-level layout
algorithms that require prior information like initial layouts, which could otherwise not
be implemented.

Vega does not continuously send all of its data through the dataflow graph. Instead, it
sends changesets. Changesets describe the subset of changes in state information that
the system needs to update. This includes new signal values or data tuples and updates
to dependencies.

Vega-Lite

With all its mentioned functionality, Vega is a versatile tool that can describe visualizations
in great detail. However, as Satyanarayan et al. [SMWH16] put it, Vega, as well as
ProtoVis and D3 are useful for explanatory data visualization, which is the process of

17

2. Related Work

(a)

rect:mousemove

mousemove mousemove mousemove

stream of mousemove events that occur on rect marks

(b)

mousedown

mouseup

mousedown

mousedown mouseup mousedown

mousedown, mouseup

single stream merges mousedown and mouseup streams

(c)

[mousedown, mouseup] > mousemove

stream of mousemove event that occur between mousedown and mouseup

mousedown mouseup

mousemove mousemove

mousemovemousemove mousemove

(d)

stream of mousemove events that occur at least 3ms and at most 5ms

apart from each other

mousemove{3ms,5ms}

mousemove

mousemove

mousemove mousemove

0ms 2ms 4ms 6ms 8ms 10ms

mousemove mousemove mousemovemouseup

Figure 2.7: Different examples of event-selectors for filtering a stream.
Source: [SWH14]

18

2.2. Visualization Systems for the Web

crafting visualizations to explain data. In contrast, high-level tools like VizQL [STH02]
and ggplot2 [Wil12][Wic10] allow a fast exploration of data. These tools provide predefined
functionality through concise functions populating various values, that would typically
have to be specified, like scales or colors, through default values. This aids a different
kind of visualization called exploratory visualization. Vega-Lite [SMWH16] is a language
built on top of the Vega system to provide similar concise functionality for exploratory
visualization.

At the core of the Vega-Lite grammar is the unit specification, which describes a single
Cartesian plot. Contained in this specification are the data, a mark-type, and a set of at
least one encoding definition for visual channels. These channels are equivalent to the
properties referred to in previous works. Examples for such channels are color, position,
or size. The data in this unit specification needs to be a relational table consisting of
records (rows) with named attributes (columns). Transforms can operate on these tables,
which are capable of filtering values or calculating new columns. As the anonymous
property functions in ProtoVis and Vega, the encodings describe how data is mapped
to the properties of the graphical marks. The first element in the specification of an
encoding is the visual channel. Vega-Lite offers various visual channels: x- and y-position,
color, size, shape, and text. Also needed in the encoding specification is the field value.
This value describes which attribute, and therefore column, the specified visual channel
encodes. The data-type element states to which type of data the value should be encoded.
The possible options are: nominal, ordinal, quantitative, and temporal. Other than these
three mentioned values, encodings can also specify a scale that transforms the reference
data and a guide allowing the definition of an axis or legend. Visual channels that are
not specified in the encoding are filled up by sensible default values. Using this approach,
various diagrams like bar charts, histograms, or dot and scatter plots can be defined
concisely.

An example unit specification is displayed in Figure 2.8. Vega-Lite also provides an algebra
for composition, which enables the creation of composite views featuring multiple such
unit specifications. This algebra operates on views, which are either unit specifications
or composite ones. In that way, views can be combined in arbitrary many levels. One
operator of the composition algebra is the layer operator. This operator combines
multiple views into a single chart that uses the same axes. The concatenation operators
hconcat and vconcat place the specified views either in a single row (horizontal) or column
(vertical), respectively. Other possible operators are the facet and repeat operator.

Interactions are an essential part of Vega-Lite. For this, Vega-Lite introduces a grammar
of interaction. This grammar adds selections to the unit specifications. Selections form
a set of points that the user interacting with the visualization wants to manipulate.
When interaction events fire, the selection is filled with selected data points that satisfy
the selection predicate. By default, these data points are the underlying data tuples of
a visual mark instance. Therefore, if the user clicks a visual mark in a visualization,
the system adds the respective data tuple to the selection. If a user interacts outside
of discrete visual marks, for example, when he tries to draw a selection rectangle, the

19

2. Related Work

{

"data": {

"url": "data/weather.csv",

"formatType": "csv" },

"mark": "line",

"encoding": {

"x": {

"field": "date",

"type": "temporal",

"timeUnit": "month" },

"y": {

"field": "temp_max",

"type": "quantitative",

"aggregate": "mean" },

"color": {

"field": "location",

"type": "nominal" }

}

}

Figure 2.8: Vega-Lite specification of a simple line chart showing the monthly aggregated
mean temperature in two cities.
Source: [SMWH16]

mouse positions are transformed by the inverse scaling and checked against the predicates.
There are three selection types. Point selections reference only one data point. This
single point can also behave like Reactive Vega’s signal. Another essential selection
type is list selection. The list selection contains a dataset into which data points are
inserted, modified, or removed. Lastly, interval selections also reference multiple values,
but instead of list selections, they represent continuous selections between a minimum
and a maximum value specified in the selection predicate. Selections can not only listen
to default events, which are automatically configured depending on the target platform
(mouse on desktop, touch on mobile), but also to events specified by Reactive Vega’s
event selection syntax (see Figure 2.7).

2.3 Functional GUI Frameworks on the Web

2.3.1 Elm

Elm [Cza12][CC13] is a functional language for creating web apps that is based on FRP
[EH97] and its related research. It compiles to HTML and JavaScript. Therefore, the
language works with the same environment as our solution i.e., front-end web technologies.
The Elm architecture consists of three parts: The model, which stores the immutable
state of the application; The view function, which produces and HTML output from
data of the model and describes when messages appear; And the update function, which
reacts to the messages and knows how to update the model accordingly. A simplified
event-loop of this system is shown in Figure 2.9.

20

2.3. Functional GUI Frameworks on the Web

Figure 2.9: The communication flow between Elm and the browser.
Source: [Cza20]

2.3.2 React & Redux

React

Like ELM, React [Inc21] is a functional framework for creating web apps. Therefore it also
lives in the web environment. A React application defines functions that hierarchically
take the state as input and produce DOM elements as output. The framework then
automatically computes which DOM elements to recompute according to how the state
changed. React does that by a simple referential comparison. If elements have the same
reference, they are considered the same, and no recomputation occurs; otherwise, the
system recomputes the DOM elements. Additionally, users may overwrite this behavior
with a custom comparison code. React also lets users define stateful components. These
components are elements that include state, and hence do not follow the general functional
architecture of the framework.

React is written in JavaScript and uses a syntax extension called JSX. This syntax
extension allows functions to return HTML specifications of DOM elements directly.
Furthermore, JSX enables the mixing of expressions and HTML tags. For example, it is
possible to create a JavaScript array and directly map it to HTML elements, producing
an element list in the process.

Redux

Redux [Abr21] is commonly used in combination with React and adds advanced state
management to the system. At its core, Redux is a single store that handles the complete
state. Consequently, all state changes must pass through this one place. They are
triggered by so-called actions that are dispatched to the store. Redux passes these actions
together with the current state to reducers. These reducers, in turn, know how to update
the state according to the received actions. Finally, code can subscribe to changes in the
store and fulfill computations, like updating DOM elements, according to them.

21

2. Related Work

2.4 Visualization Systems for Domain Experts

2.4.1 MeVisLab

MeVisLab [AG21] is a visualization tool primarily developed for medical image processing.
It is written in C++, making it a native application [HSP09]. Visualizations are created
by constructing a network graph of modules. The network graph can also be encapsulated
into a macro module to reuse visualization techniques or algorithms in new visualizations.

Developers can extend MeVisLab’s modules, pipelines or the user interface via both
JavaScript and Python. Additionally, an abstract module definition language enables
provides an simple method for creating GUIs.

An example of MeVisLab is depicted in Figure 2.10. The network graph in the middle
represents the logic of the visualization. The graph consist of various modules the color
indicated wether the module is responsible for image processing (blue), visualization
(green) or a macro module (orange). Next to the network graph, a 2D (left) and a 3D
(right) visualization can be seen. The window below the 3D visualization shows a custom
GUI module.

2.4.2 Inviwo

Just like our system, Inviwo [JSS+19] offers users to specify the complete visualization
pipeline by using modular components. Inviwo calls these units processors. In the Inviwo
system, users can create their visualization pipeline by linking these processors inside a
graphical network diagram. Thus, the processors form nodes inside a node-based flow
diagram like it is used in various visual programming systems.

Processors define the hardware (CPU, GPU) and the computing API (OpenGL, OpenCL,
etc.) they use. The Inviwo system then automatically marshals the data communication
between these different contexts as needed. In general, Inviwo is a native desktop
application that is mostly implemented in C++. However, there is the option to program
processors in the scripting language Python.

In contrast to our system, where generic information is passed through the pipeline
units utilizing the model, the Inviwo system explicitly transports certain data types
between processors. The network diagram reflects these data types by coloring the links
between the processors in corresponding colors. This coloring has the additional benefit
of enforcing a type-safe linkage.

Similar to popular game engines like Unity, Inviwo offers users the option to configure the
processors’ properties from a panel where live edits to the data can be made. Additionally,
visualization developers can also hide some of these properties to produce a reduced
view on the visualization environment. End users can then use this view to modify the
visualization according to their needs by configuring the enabled properties only.

22

2.4. Visualization Systems for Domain Experts

F
ig

ur
e

2.
10

:
A

vi
su

al
iz

at
io

n
in

si
de

th
e

M
eV

is
L

ab
sy

st
em

.
W

it
h

th
e

G
U

I,
th

e
ne

tw
or

k
gr

ap
h

re
sp

on
si

bl
e

fo
r

th
e

vi
su

al
iz

at
io

n
ca

n
b

e
m

od
ifi

ed
.

S
o

u
rc

e
:

[R
B

H
+

11
]

23

2. Related Work

F
igure

2.11:
Inviw

o
application

show
ing

the
configurable

node-based
flow

diagram
that

creates
a

volum
e

visualization.
S

o
u

rc
e
:

[JSS
+

20]

24

CHAPTER 3
Language Design

This chapter lays the theoretical groundwork for the design of our DSL. At first, we
state attributes in the form of design goals that we want the visualization system to have
(Section 3.1). These goals then influence our choice of the host language our DSL resides
in as an embedded DSL. The host language then defines the syntactic language space
of our DSL, i.e., the rules defining all possible expressions in the DSL. In Section 3.2,
we illustrate how this language space looks like by providing the grammar of the host
language. Resulting from the modular design of our system, all expressions in this host
language space are also valid expressions of our DSL. This equivalence emerges from the
modular components of our system, which can enforce semantic constraints on the DSL,
hence defining the semantics of the DSL as a whole. The concept of specifying the DSL
loosely by keeping the semantics open for the modules to define is a key aspect of the
language-centric view for creating our visualization system. The actual features of the
visualization system, provided by this unusual method of defining a language, and the
resulting, concrete feature set of the DSL are explained in Chapter 4.

3.1 Design Goals

For starting the design process of our language, we formulate goals that the language
and the resulting visualization system should achieve. We formulate goals and argue
trade-offs given technological constraints such as compatibility with the web execution
environment and usability. The goals of our language are the following:

• Describe visualizations in a concise, text-based manner:
Visualization descriptions should keep the number of code lines small. Definitions
should be concise and understandable for non-programmers.

25

3. Language Design

• Define own interactions inside the language:
The visualization description must be powerful enough, to define custom interactions
that change the visualization’s appearance.

• Support common visualization types:
Our language must be capable of describing common visualization types, like
traditional meshes, point clouds, volumes, and flow visualizations. The aim is to
provide out of the box support for some popular visualization types, but enable
others via an extension mechanism.

• Enhance the language using an extension mechanism:
It must be possible to extend the visualization description language to add custom
functionality to the system.

• Support an interactive workflow:
The language must support an interactive workflow, where changes to the source trig-
ger immediate updates and, therefore, enrich the visualization-creation experience
for the end user.

• Performance:
The system has to run at similar performance characteristics comparable to hand-
crafted visualizations.

• Efficient recalculation:
Changes in visualization state, for example triggered by user interaction, must be
handled efficiently by the system. The resulting changes should keep the load of
recomputation and allocation of graphics resources small.

• Saving the visualization state:
It must be possible to save the current state of the visualization at any time. The
resulting snapshot must reproduce the visualization exactly, enabling a simple way
of sharing visualizations.

• Determinism:
The visualization has to update in a deterministic fashion. Therefore, recorded
changes must produce the same visualization when replayed, enabling undo/redo
and granular debugging capability.

• Shareability & Platform independence:
Visualizations described by the language must be easily shareable to others. The
visualization system must run on various operating systems out of the box to fulfill
shareability requirements.

26

3.2. Language Definition

3.2 Language Definition

The definition of a language comprises syntax and semantics. The syntax is the set of
rules that define how expressions must look to be valid in the given language. Semantics,
on the other hand, describe the meaning behind those expressions.

3.2.1 Syntax

One of the design goals is a good sharability of our language. The web ecosystem plays a
significant role in how knowledge is shared today. Therefore, we want our language to
exist in this environment. Naturally, there already exist languages that are in use for
communication. One of these languages is the human-readable JSON format. It is not
only the default notation for serializing JavaScript objects, but also a frequently used
language for web communication like, for example, in REST APIs. As such, we select the
JSON format as the notation of the DSL instead of inventing a new syntax. Therefore,
JSON is the host language of our DSL. Automatically, this allows our language to be
communicated easily across the web and leverage already existing tools. It also means
that the front-end language of the web, JavaScript, can natively operate on it.

Because the DSL uses the JSON format as its basic structure, our language is an embedded

DSL. Consequently, our language has to abide by the syntactic restrictions that the
JSON format enforces. Listing 3.1 shows the grammar of JSON in EBNF form.

In Listing 3.1, we can see that, first of all, JSON has three primitive data types: numbers,
booleans, and strings. Additionally, two structure types exist: arrays and objects.
Together these five data types formulate every possible instance of what the JSON
specification [ECM21] calls value. Objects are unordered key-value pairs storing the
aforementioned values, indexed by strings as keys. Arrays, on the other hand, are ordered
structures that store arbitrary values in a sequence.

These syntactical limitations of the JSON format have some severe consequences for our
language. For example, JSON does not feature a way to encode functions and enforces
a clear separation between data and code. Another significant limitation is that JSON
does not support multi-line strings inside the format. Strings inside the JSON format
may contain \n as line-breaks, but they can not span multiple lines inside the file.

3.2.2 Semantics

In any case, our visualization description needs semantics. Other visualization DSLs like
Vega [SWH14] and Protovis [BH09] have a grammar that identifies the largest common
overlap of the supported visualization-types’ functionalities. The grammars then use
this common overlap for defining a logical structure for encompassing the similarities
as well as the differences of the visualization types. For example, Vega visualizations
define data sources and encoding functions as common elements of all visualizations.
Vega descriptions specify marks to get a different visualization. Marks are hierarchically
structured so that they inherit common properties from their parent marks. Using this

27

3. Language Design

json ::= element

value ::= object | array | string | number | boolean | null

object ::= '{' member (',' member)* '}'

member ::= ws string ws ':' element

array ::= '[' element (',' element)* ']'

element ::= ws value ws

string ::= '"' character* '"'

char ::= ([#x20-#x10FFFF] - '"' - '\') | ('\' escape)

escape ::= '"' | '\' | '/' | 'b' | 'f' | 'n' | 'r' | 't'

| ('u' hex hex hex hex)

hex ::= [a-fA-F0-9]

number ::= integer fraction? exponent?

integer ::= '-'? ([1-9] [0-9]*)

fraction ::= '.' [0-9]+

exponent ::= ('e' | 'E') ('+' | '-')? [0-9]*

boolean ::= "true" | "false"

null ::= "null"

ws ::= (#x20 | #x0A | #x0D | #x09)*

Listing 3.1: Grammar of JSON in EBNF form based on the JSON specification [ECM21].

structure, other DSLs offer a concise and inherently systematic approach for mapping
the space of possible visualization types onto their grammars.

In our design, we take a different approach. While this systematic strategy fits well
for languages that define a closed scope of possible visualizations, we think that such a
strategy does not suffice with more generic visualization spaces. This inference seems
to be particularly valid for the goal of enabling custom visualizations and offering a
strong capability of extending the language. Defining an overarching structure where all
possible visualizations fit under seems complicated and prone to sacrifices in conciseness
for the sake of generality. Therefore, we opted for an unconventional approach: As an
alternative to creating this systematic structure, we deliberately do the opposite. We do
not define the semantics at all. Instead, we defer this decision to the system’s atomic
building blocks, modules (Section 4.2).

28

CHAPTER 4
System Design

This chapter formulates our visualization systems’ architecture that results in the concrete
properties and feature set our DSL comprises. The architecture is also key to the following
implementation of the system in Chapter 5.

For this chapter, we first give an overview of the general architecture, explaining the
various components that make up the visualization system as well as their interplay
(Section 4.1). Afterwards, we look at each component individually and give an in-depth
explanation of its functionality. In this process, we also sketch alternative approaches
and argue for the design choices we take.

4.1 Overview

In general, the whole visualization-creation environment comprises several components,
as can be seen in Figure 4.1. The figure is inspired by VisLang’s [RBGH14] system
overview (see Figure 2.2) to highlight the similarities between the two approaches. On
the left, Figure 4.1 shows the DSL. The visualization system in the center takes it as
input and produces the final visualization on the right. As illustrated in the figure, the
visualization system uses modules that together create the final visualization.

How our language lets users create visualizations is heavily intertwined with how the
system operates. Hence, we will describe the system’s properties and structure and take
those to formulate the functionality and expressiveness of our language.

We start the design process of the system with the central abstraction of every visu-
alization system: the visualization pipeline as described by Card et al. [CMS99]. The
visualization pipeline is a highly individual construct and differs between different ren-
dering techniques [Mor12]. However, all pipelines feature two aspects for sure: Every
pipeline takes in data initially, and in the end, produces a visualization.

29

4. System Design

“threshold”: 0.853

“threshold”: 0.75,

“texture”: “gray”

3

4

“threshold”: 0.653

interactive visualization

{

 “volume”: {

 “threshold”: 0.25,

 “texture”: “color”

 },

 “texturePaths”: {

 “color”: “../data/color.png”,

 “gray”: “../data/gray.png”

 },

 ...

}

DSL

1

2

3

4

5

6

7

8

9

10

11

volume

modules

camera

...

render v
is

u
a

li
z
a

ti
o

n
 s

y
s

te
m

parser

render

messages

unparser

Figure 4.1: The interactive visualization-creation environment consisting of the DSL (left)
that describes a visualization which the modular visualization system (middle) reads,
producing the interactive visualization (right). Interactions with the visualization trigger
changes to the DSL, while changes to the DSL by the user trigger immediate updates to
the visualization.

As we want the system to be as generic as possible, users must be able to decide how the
pipeline is structured and what its result looks like. Thus, our language enables users
to construct the concrete visualization pipeline by combining modular pipeline stages,
which we call modules.

A fixed visualization pipeline is good enough if the output is a static image. However,
the system needs another functionality: interactions. Hence, the system is not a simple
pipeline but a loop that executes the visualization pipeline whenever interactions happen.
Figure 4.2 shows the system’s event loop. It consists of two distinct parts and the
two communication directions between them. A detailed description of these parts and
argumentations of why they are crucial to the system, is given in the following sections
of this chapter. Here we now give an overview of our final solution to guide the reader
through the components and their relationships.

Model View

change-set

message

Figure 4.2: The event loop of the visualization system.

30

4.2. The Module - an Atomic Unit of Functionality

We start on the left of Figure 4.2, which shows the model stage. This stage handles the
visualization’s immutable state, which we call the model. During this stage, the system
executes the pipeline by taking such a model as input and produces a new model. Then
the system computes the differences between the two models constructing the change-set,
i.e., the collection of all changes. Next, the system passes the change-set to the view
stage. This stage controls the view, which stores the visualization’s mutable state, for
instance, references to the GPU, the graphics context, or DOM elements. In this stage,
the visualization gets rendered. To complete the circle, the view stage can put user
interactions into the message-queue. As a consequence, interactions produce messages
that invoke the visualization pipeline. This invocation produces a new model, hence
completing the event loop.

4.2 The Module - an Atomic Unit of Functionality

Modules are the building blocks of the configurable visualization system. They also
define the semantics of the DSL, which describes the visualizations. By chaining modules
together, the whole visualization pipeline emerges, which performs the complex task of
transforming input data into an output visualization. Hence, the module concept follows
the prominent divide-and-conquer approach to solve difficult tasks by dividing the logic
into multiple simple tasks.

From a general point of view, a module is just a function. It takes an input and produces
an output. Usually, functions do not take arbitrary inputs. Instead, they constrain
their input in some fashion. In statically typed languages, for example, they require the
input to be of a specific type. Of course, this might extend to a list of input parameters.
Likewise, the functions return a value of a specific type, which other functions can then
rely on to have certain properties, as guaranteed by the type.

We want our modules to have the same guarantees. A module wants to state what input
it expects and provides a set of constraints its output fulfills. The following example
illustrates why this is needed: The pipeline in the example consists of three modules
that are arranged in a linear sequence. The first module is the data loading module. It
only takes the path to a data file as input. When executed, it reads data from the file
with an I/O operation, parses the file in a certain way, and then provides the read data.
The second module in the pipeline is a statistics module that expects the first module’s
data as input and calculates various statistical values and aggregations. Finally, the
last module is the actual visualization module producing a visualization as an output.
However, as input, the module needs the statistical data from the second module and
the raw data points from the first module.

The last module must be able to state that it expects both the result of the first and the
second module as inputs. If the third module would indeed be able to state that, a linear
pipeline would have no way of passing the output of the data loading module directly to
the pipeline’s last module.

31

4. System Design

Reformulating the example into a more formal notation gives us the following: We have
a chain of modules m0, m1, and m2. Module m0 takes input A and produces B. Then
module m1 takes B as input and produces C, while module m2 takes B and C as input
and produces D.

So what we want to do is pass B to m2 in a sequential pipeline, i.e., a pipeline where
modules are executed after another. General purpose programming languages can easily
solve this problem. In such languages, one would assign B to a variable and pass the
variable to both m1 and m2. A simple pseudo-code would look as follows:

Input: Input data A
Output: Output D

1 B ←− m0(A);
2 C ←− m1(B);
3 D ←− m2(B, C);
4 return D

In the sequential pipeline example, this behaviour is impossible, as we only pass the
result of one module to the next module’s input. Therefore, sequential pipelines cannot
express complex dataflows directly. One option for providing such functionality would be
to extend the language with constructs for dataflow similarly to dataflow in arrowized
functional-reactive-programming [NCP02].

Another option is a more flexible type system that permits data-type generic modules.
Since modules should be reuseable without additional dataflow specification, we opt for
data-type generic modules. Our method is inspired by row-polymorphism known from
programming-language theory [Wan91].

Row polymorphism accepts a record as input that contains required fields. Besides these
required fields, the record may contain additional fields that the receiver ignores. However,
operating on the record retains all fields, the required ones, and the additional ones. As
a result, the output automatically retains all the constraints of the input. Usually, it will
also provide new guarantees, coming from the computed result.

The rationale behind our composition scheme is that each module adds to the currently
available inputs for the next module. However, each component imposes minimal input
fields, resulting in a flexible reuse of components in different concrete pipelines.

For the previous example, this would mean the following: The first module m0 takes A as
input, but instead of producing only a B, it produces a record containing the information
of A and B. We call this record B′. It is the combined set of A and B so that we can
formulate it in set notation as B′

= A ∪B. The second module, m1, requires B as input,
which is contained within B′. Therefore, B′ can be used as input for the second module.
Like with the first module, we get a combined output C ′

= A∪B ∪C. The third module,
m2 requires B and C as inputs, which are both subsets of C ′ - thus they can be used

32

4.3. The Pipeline - a Sequence of Computation

as input for the last module which solves the initial problem. Finally, it also creates an
output that suffices the combined constraints D′

= A ∪B ∪ C ∪D.

m0 m1 m2A B′

B
C ′

B ∪ C
D′

Figure 4.3: The final output contains all previous results because of row polymorphism.

Figure 4.3 shows the row polymorphism solution for the example problem. Additionally
to specifying pipelines concisely, this approach allows subsequent modules to only use
a subset of the output from the previous module, which again improves reusability.
For example, a module could take any input that has a bounding box field for physics
calculations. Such a module could take input from various different modules’ output as
long as they have such a field. More formally, this means that if a module mn requires an
input of form In, it can use the output On−1 of a module as long as it satisfies In ⊆ On−1.
In turn, the module produces an output O′

n that is different from the output its type
enforces to produce, On. Namely that it is satisfying O′

n = On−1 ∪On.

4.3 The Pipeline - a Sequence of Computation

Analogous to functions, modules can create complex computations by composition.
Composing modules, both hierarchically and sequentially, creates the full computation
description of our visualization, which we call the pipeline.

The pipeline states the order and the instructions of the execution. The pipeline’s main
requirement is the ability to specify it inside the DSL, that is, inside the JSON format,
while still enabling composition so users can construct intricate visualization programs.

A generic abstraction that comes to mind for modeling the pipeline is a directed graph.
While graph execution order can be specified in textual form as demonstrated by, for
example, the DOT [aut21] language it has drawbacks: Such graph description languages
suffer from the integral problems of translating a spacial object, the graph, to a text-based
format. For instance, in cases where various nodes share the same parent, users must split
them into multiple text lines. Even worse, the order, especially the starting and endpoint,
is not immediately evident, as the line order is often irrelevant in such languages. In
general, graphs specified in such a manner can be challenging to visualize as they require
users to form a mental model of the graph for understanding its structure.

Another significant drawback of using a pipeline description as a generic directed graph is
that the execution order of neighbor nodes (siblings) is not defined. At first, this lack of
definitions might seem like a good thing, as the system could decide on an order between
such nodes based on performance considerations. However, it might not be apparent

33

4. System Design

to the user how the system handles the nodes, which increases the user’s confusion.
Therefore, we refrain from a graph representation of our pipeline.

module 0 module 1 module N

sub-module 1.0 sub-module 1.1

Figure 4.4: A pipeline of linked modules. These modules can recursively contain sub-
modules creating a hierarchical pipeline.

Instead, we choose a representation that is easily expressable in the JSON format: An
array of modules. The order in the array naturally gives a notion about the linear
sequence of execution. For facilitating a more versatile composition, the pipeline array
may also recursively contain pipeline arrays themselves (see Figure 4.4). If this capability
is still not enough, users can extend the pipeline easily. For extending the pipeline, they
have two options. On the one hand, they can create a simple module that executes other
hard-coded modules in the desired fashion. On the other hand, they can also define
their own custom pipeline-handling scheme inside a module. Then they can reference
that module as the only module of the original pipeline, while taking their custom
pipeline-description format as input. With this method, users can even implement the
pipeline representation with the DOT language, as mentioned above. This notion of
offering a sensible default, but allowing to implement custom systems on top is a central
design philosophy or our language.

4.4 The Model - an immutable Bag of Data

Semantically, modules, and their use within a concrete pipeline specify a static visual-
ization. The standard way of adding dynamism is to employ a dataflow language or
functional-reactive programming. While this is a viable approach, it is hard to align with
the design goal of saving the visualization state. For accomplishing this goal, we regard
the visualization’s state as a principal part of our system’s architecture, which we call
the model. Furthermore, the DSL contains the full information to reconstruct that model
and hence enables snapshot capability.

The model stores the complete state of the visualization, so every change to the visu-
alization is reflected in it. This method enables an essential property: Only when the
model changes, the respective visualization may change. Because of this property, the
model contains all the information needed to create or recreate the full visualization.
This information is organized in an immutable tree structure, which means that every
model instance is a fixed snapshot of the visualization. Therefore, the pipeline creates
new model instances when executed.

34

4.5. The View - an Interface to the Outer World

The model is not only the output of the pipeline invocation, but it also serves as a
communication medium during the computation. Similar to some distributed-computing
architectures, the model is the central data hub. Modules take the information they
need from it and put back what they produce. However, as models are immutable,
putting back information creates a new copy of the complete model. This process might
sound inefficient at first, but unchanged branches can simply reference their old instances
because of the model’s structure as a tree. Thus, the computational load is proportional
to the actual changes. One might ask why the model is immutable in the first place. An
important reason for this choice is the previously mentioned snapshot capability. The
system is constructed from the ground up to deal with new, potentially unrelated models
(snapshots) at any invocation. Some beneficial characteristics and use-cases emerge from
this decision. For example, different states of the visualization can easily be stored by
saving their corresponding models. Later, users can load the saved models and compare
the visualizations. Going back and forth in visual exploration thus boils down to restoring
a previous state.

The model and the DSL have a close relationship. Other frameworks that feature data
stores typically hide their stores from the user. Thus, they require runtime inspections
to read values. Our model differs from that by directly linking the input DSL and the
model through an intermediary, the parser.

In fact, the model is the parsed representation of the DSL. This linkage allows mapping
from the model to the DSL and vice versa, an essential feature for the system (details
see Section 5.8).

In general, this relationship means that the DSL itself is an ever-changing representation
of the system’s live state in human-readable form. Therefore there is not much difference
between the model and the DSL. The model is just the system’s internal representation,
while the DSL shows the system’s state to the user. They directly modify their counterpart
upon changes and hence are synchronized. Thus, the DSL as textual representation
contains all information needed to recreate the visualization.

4.5 The View - an Interface to the Outer World

While the model is the core of the system and directly accessed by the user via the DSL,
the view contains all rendering specific data structures such as GPU buffers or graphical
elements. While the primary data store, the model, keeps track of all the conceptual
states, the view is tracking and storing data that is only relevant for the current execution.
Such data includes references to DOM elements or GPU buffers required for running the
visualization, but are only valid inside the current context. Those foreign data objects
are also prone to internal modification without the system knowing about it. Therefore,
the view is mutable by nature. In contrast to the model, the information inside the view
may change independently from the system.

35

4. System Design

module 0 module 1 module N

update()

view()

update()

view()

update()

view()

Figure 4.5: The two pipeline tracks: model and view.

The clear separation of those two storages results in a duality of the pipeline’s execution
logic (see Figure 4.5). We call these two execution paths the model- and the view-track.
As the name implies, the origins of the model and view separation go back to the
Model-View-Controller (MVC) pattern [KP88]. Traditionally the model component in
this pattern manages the state of a program. The view manages the GUI and updates it
according to the state. Lastly, the control component works as an intermediary by taking
user input from the GUI and modifying the model. While this programming pattern was
first used for its separation of concern principle [Rea89] and the resulting reusability, our
system draws another vital benefit from such a separation: Separating purely functional
and imperative, state-based code.

Drawn from functional programming, purity—that is side-effect free code—allows reason-
ing about the model and its changes easily. It is possible to analyze pure computations
and, for example, reorder them in an efficient fashion.

Interfacing with low-level graphics APIs requires mapping of the immutable model state
to graphics commands. This problem is not new. Elm (see Section 2.3.1), for example,
uses their runtime system to update the GUI state, given a new application state. React
(see Section 2.3.2) takes a similar approach and uses so-called reconciliation to update
user interface elements automatically. In this work, we take a different approach. While
our system provides basic adapters for Three.js, the module system enables the creation
of custom adapters for other imperative backend APIs.

Traditional systems often use a dependency graph to track changes that are then executed
by immutable updates. Instead, in our approach, a module’s view function can handle
changes of the underlying model through provided change handlers. These change handlers
know how to modify the view according to changes in the model. For example, when
adding entries to the model, the system calls a specific function where the module can
react to that change. If other changes like removals or updates happen, other respective
functions get called. Further explanation of this process and the implementation is given
in Section 5.7.

36

4.6. The Change-set - a Difference of Models

4.6 The Change-set - a Difference of Models

Invoking the view track requires information on how the model store changed over
time. We supply this information to the view track with the change-set. The change-set
expresses the change between models by describing the difference between them.

A change-set can be one of the four primitive changes (None, Add, Update, or Remove)
or a complex object with properties that can be complex changes or primitives. This
representation expresses the difference between two models in a hierarchical fashion,
making early exits possible. For example, if a large subtree of the model stays constant,
that subtree’s root node is a primitive None change instead of a change-set object.

Figure 4.6 shows an example of such a change-set, between the old model Mold and the
new model Mnew. The resulting change-set of this example contains all different cases
that can arise: Branch c of Mold does not exist in Mnew, wherefore its node points to a
Delete value in the change-set. The reverse happens for branch ac. It exists in Mnew but
not in Mold, so therefore it gets an Add value. If a value changes but the structure stays
the same, like in the ab branch, the change-set will contain an Update value. If the values
stay the same, two cases can appear. Either the change is a direct None as in the aa
branch. Alternatively, as with branch b, the whole subtree stays the same. In the latter
case, the None value is the subtree’s direct child instead of containing the complete node
structure as in the models.

Mold

c

0

b

bb

0

ba

0

a

ab

0

aa

0

Mnew

b

bb

0

ba

0

a

ac

1

ab

1

aa

0

change-set(Mold, Mnew)

c

D
elete

b

N
one

a

ac

A
dd

ab

U
p

date

aa

N
one

Figure 4.6: A change-set of two example models, Mold and Mnew.

In brief, the explained change-set covers the information flow from the model track
towards the view track. Therefore, we covered the upper arrow from the event-loop
diagram (Figure 4.2). Additionally, as the change-set provides the exact information
about how a new model changed compared to the old one, it is essential for models’ reuse
and snapshot capabilities.

37

4. System Design

4.7 The Message-queue - an Order of Communication

The message-queue is the communication medium for getting information from the view
back to the model. Hence it completes the communication circle from Figure 4.2. The
queue is a simple sequential storage where asynchronous processes can enqueue messages
at any time. Modules can emit messages either during the view-track invocation directly
or through callbacks. The view function can pass these callbacks to other objects outside
of the pipeline’s control, such as DOM elements. Therefore, the message-queue works as
a bridge, translating between external events and internal modules.

For each frame, the system reads out the queue until it is empty and processes the
messages in FIFO order, invoking the model track once for each of them. This process
works similar to the typical message pumps encountered in GUI applications.

Messages consist of two parts, the type, and the payload (see Figure 4.7). Modules can
discriminate the messages by the type and, in that way, decide if an incoming message
is relevant for them or not. The payload contains the actual information transported
via the message. Of course, this can also function as a secondary mechanism to decide
whether the message is relevant.

Every track invocation produces a new model that serves as input for the next one.
Eventually, after all messages are processed, the calculation of the change-set (Section 4.6)
happens, followed by a single invocation of the view track, completing the event loop.

module 0 module 1 module N

view() view() view()

message type payload

MSG_TYPE_0 { field0: "value0" }

MSG_TYPE_1 "a_string_payload"

MSG_TYPE_0 { field0: "valueN" }

MSG_TYPE_2 { event: "event0" }

DOM

Figure 4.7: The message queue, in which modules as well as other processes like DOM
elements enqueue messages.

38

CHAPTER 5
Implementation

This chapter outlines the implementation of our system as described in Chapter 3. As
our system lives in the web-ecosystem, our choice of the implementation language is
constrained by a vital requirement: the ease of interfacing with this ecosystem. Naturally,
JavaScript, as the language of the web, fits this requirement. However, JavaScript is
loosely typed and a dynamic language. We want to enforce some constraints on user-
written code and provide some guarantees through a type system to avoid costly runtime
checks. Hence, we choose TypeScript as our language, which is a superset of JavaScript
and beside a static type system also provides various features from the latest ECMAScript
definitions.

The result of the system’s computation, the view, is a generic JavaScript object that
contains an arbitrary output. Hence, the system can also produce other output than
visualizations. Nevertheless, we created the system with the visualization context in
mind. Therefore, the view store references a canvas element that contains the resulting
visualization. We also do not require a specific technology to create the canvas element’s
content. As a result, the system is rendering-backend agnostic. However, the example
modules use the Three.js JavaScript library, a WebGL wrapper, for its rendering. With
the example modules, we show how our system can interface with such a rendering library
and create visualizations in the process.

Our system is largely influenced by the module concept described in Section 4.2. Similar
to classes, modules handle their own, encapsulated tasks. The modules only interface
with each other in a predefined manner. Therefore, the library managing the system
and language is mainly a hierarchical construct of these modules. The system’s whole
functionality executes from a central place that is itself a module, the core module. The
whole system, except a thin interfacing layer that exports the external calls and manages
the event loop, is part of this module hierarchy (see Figure 5.1).

39

5. Implementation

interactive visualization

system.ts

core.module.ts

parser render

messagesunparser

modules

scene.module.ts

sphere.module.ts

...

render.module.ts

source.module.ts

meta modules

apply-init.module.ts

handle.module.ts

parser.module.ts

path-resolve.module.ts

{

 “volume”: {

 ...

 }

}

DSL

1

2

3

4

5

Figure 5.1: Implementation-centric overview of our system from Figure 4.1. The system
handles the event loop and communicates with the core module, which delegates tasks like
rendering and message processing down the pipeline where modules and meta modules
operate in a user-defined sequence.

The event-loop handling consists of the four parts from Figure 4.2. While invoking the
model and view tracks are simple calls to the core modules update and view functions
(as seen in Figure 4.5), the computation of the change-set and management of the
message-queue reside at the top level of the system, outside of the module hierarchy.

5.1 Computing the Change-set

As described theoretically in Section 4.6, the change-set represents the difference between
two models. With this information, the system knows how its state changed and how
it must change its visualization to reflect the new state. Thus, it is of vital importance
for the execution of the view track. In practice, the system computes the change-set for
two cases: Either once per frame by taking the newly computed model (Mnew) and the
model from the previous frame as input (Mold), or when a model snapshot is loaded.

Before describing how we compute the change-set, we first define the structure of
the computation’s output. Listing 5.1 shows the type definition of the change-set in
TypeScript notation. As can be seen, the four primitive cases of the change-set are
described by the Change enum. A change-set of generic type T is either an instance of
such a Change enum or a complex object. This complex object has the same structure
as the given T, but for every field (key) in T, it has itself a change-set. Whenever the key
points to a primitive, the change-set must resolve to a primitive enum instance. The T in
this case is the union type of Mold and Mnew, hence T = Mold ∪Mnew.

40

5.2. Managing Messages

enum Change {

None,

Add,

Update,

Remove,

}

type ChangeSet<T> =

| { [K in keyof T]: T extends object ? ChangeSet<T[K]> : Change }

| Change

Listing 5.1: Type definition of the change-set.

With the definition of the output, we can now formulate Algorithm 5.1, the diffing
algorithm that manages the change-set computation of its inputs.

At first, the algorithm compares both models (Line 2). If the two models are both
primitives (number, string, or boolean), this comparison compares their values. Instead,
if they are both objects, their references are compared, which means that the test only
passes if Mold and Mnew are the same objects. In both cases, Change.None is returned if
the comparison evaluates to true. Afterwards, the algorithm only continues if both models
are objects (Line 5). Otherwise, the change-set is a flat Change.Update. However, if
the check passes, we probably have to construct a complex change-set object.

Constructing this complex change-set object requires two loops each over the properties
of one of the models. If a property exists in both models, the diff function computes the
change-set recursively (Line 10), resulting in a potentially nested change-set. Therefore,
the algorithm, in general, walks the object tree in a depth-first fashion. This choice
models the expected form of changes in the object tree. Most changes to the model will
only affect a local branch of the object tree.

If the property only exists in Mold, the change is a flat Change.Remove. In the symmetric
case, if the property only exists in Mnew, the change is a flat Change.Add. During the
two loops (Line 8, Line 17), the algorithm keeps track whether one of the resulting entries
in the change-set is different than Change.None. If all entries are Change.None,
the algorithm does not return a complex change-set but a flat Change.None instead.
Therefore the Change.None "bubbles up". Even if the two models’ objects have different
references (they do not pass a simple equality comparison), if all of their containing
properties have equal values, they are themselves considered equal.

5.2 Managing Messages

As described in Section 4.7, we collect messages inside the message-queue and thereby
handle the communication from the view to the model track. For this approach, we have

41

5. Implementation

Algorithm 5.1: Diffing algorithm for computing the change-set between two
input models.

Input: An old model Mold, and a new model Mnew

Output: Change-set C
1 Function diff(Mold, Mnew) is
2 if Mold = Mnew then
3 return Change.None;
4 end
5 if isObject(Mold) and isObject(Mnew) then
6 C ←− ∅;
7 changed←− false;
8 foreach p ∈Mold do
9 if p ∈Mnew then

10 C[p]←− diff(Mold[p], Mnew[p]);
11 if C[p] 6= Change.None then changed←− true;
12 else
13 C[p]←− Change.Remove;
14 changed←− true;
15 end

16 end
17 foreach p ∈Mnew do
18 if p /∈Mold then
19 C[p]←− Change.Add;
20 changed←− true;
21 end

22 end
23 if changed then return C ;
24 else return Change.None;
25 end
26 return Change.Update

27 end

to provide a mechanism to access the system’s message queue inside the view track and
thus from the modules’ view functions.

To achieve this, modules have access to the emit function through the view store (see
Listing 5.2). This emit function expects another function as input, that we call handler.
The handler function can produce a message given a view V and a potential event E.
The output of the emit function is another function, this time taking an event E and
producing some output. Whenever the function is called, the system executes the provided
handler function with the latest view and the event of the outer function. Subsequently,

42

5.3. The Core Module

the system enqueues the resulting message of the handler function automatically into
the message-queue.

type Emitter<V> = V & {

emit<E>(handler: (view: V, event: E) => Message<any, any>):

(event: E) => any;→֒

};

Listing 5.2: Type definition of the emitter with the emit function.

In practice, this mechanism looks like follows: We want the system to send a message
through the pipeline, for example, a CLICK message when the user clicks anywhere on the
screen. A basic implementation could look like in Listing 5.3. At first the emit function
is called with a function that creates a click message with the x and y position of the
MouseEvent. The emit invocation produces another function, the clickListener.
This clickListener has the right signature, thanks to the type definition in Listing 5.2,
to be passed to the generic DOM addEventListener method. Now when the click
DOM event fires, the clickListener automatically enqueues a CLICK message with
the MouseEvents x and y position into the message-queue.

let clickListener = v.emit((_, e: MouseEvent) => Click(e.x, e.y));

window.addEventListener('click', clickListener);

Listing 5.3: Emitting a message when a click happens.

Implementation-wise, the message-queue is an array where messages arrive in FIFO order.
When the system processes the messages, it reads them sequentially and executes the
model track once for each of them. After this process, the system clears the message-queue,
and new messages can arrive.

5.3 The Core Module

The core module is the interface between the system’s event loop and the module system.
In general, the system handles the event loop (see Figure 4.2) by executing the four parts:

• model track invocation

• change-set computation

• view track invocation

• message management

43

5. Implementation

Of these parts, the system covers the change-set computation (Section 5.1) and the
message management (Section 5.2) implicitly. For the other two parts, the model- and
the view track invocation, the system uses the core module. This module handles the
heart of the module composition system, the pipeline as described in Section 4.3. Like
all modules, it offers an update and a view function to external callers. However, instead
of ordinary modules that must be defined inside the DSL, the core module implicitly
always exists and takes the information from the pipeline path into consideration. The
system can access the update and view functions and consequently start the complete
pipeline execution with a single call of the core module.

The the system can, by the use of the core module, orchestrate the full event loop. The
core module then parses the current pipeline information from the model and recursively
executes the matching modules. As the pipeline definition is part of the model itself,
an exciting property arises: Modules can modify the execution order by changing the
pipeline description. Hence, modules can remove themselves from the pipeline or enqueue
other modules.

Processing the update and the view function of the core module works identically. The
module evaluates the pipeline recursively and passes either the model store or the view
store through the module chain. As described in Section 4.3, a pipeline node can not only
be a module but also an array containing other pipeline nodes. Therefore the pipeline is
hierarchical and has an implicit execution order by the nodes’ position inside the array(s).

5.4 Meta Modules

In Section 5.1 and 5.2, we described the system’s aspects that live outside the modules.
The rest of the system’s functionality works solely through the module system, with
essential parts implemented inside the core module (Section 5.3). For providing the full
system functionality, the core module also relies on various aspects that the individual
modules must fulfill. A novel mechanism provides modules with these aspects, i.e., meta
modules.

Meta modules are a special class of modules. They can add functionality to other
modules. As such, meta modules work in a similar fashion as aspect-oriented programming
[KLM+97], where so-called aspects can add functionality at specific points, before or
after a function. With meta modules, this addition of functionality happens via the
moduleTransform function. This function takes a module as input and outputs a new
module. In general, meta modules provide moduleTransform functions that wrap (or
"box") the incoming module inside a pseudo module with different functionality.

To illustrate this behavior, we formulate a hypothetical logging meta-module. The logging
meta-module would supply a moduleTransform that takes the incoming module and
outputs a new module where, before and after the update and the view function, a log-
ging line is called (for example: console.log("start module: " + module.name);).
Now the system applies the moduleTransform function to every module in the pipeline.

44

5.5. Guaranteeing a Valid Model

Therefore we achieved a simple logging mechanism where all modules log their invocation
to the console.

In the DSL, users may specify meta modules in the same manner—an array that potentially
contains recursive sub-arrays—as in the normal pipeline definition (see Section 4.3). The
core module expects the resulting meta-module pipeline under the metaPipeline

identifier. On incoming INIT messages, the core module invokes the meta pipeline before
parsing the regular pipeline. While parsing the regular pipeline, the system applies
the moduleTransform function from the model to all modules. In theory, the meta
modules can also add other arbitrary information into the model. The meta modules
we implemented however work solely by chaining their internal moduleTransform to
the moduleTransform function of the model. By default, this is an identity function
initially. As this function chaining is entirely linear, special consideration must be placed
on the order if an interdependence between certain meta modules exists. Meta modules
can chain themselves in two different positions of the moduleTransform function call
chain: as first or as last modules.

The meta-module system enables multiple essential aspects of our system, on which
standard modules may depend. Consequently, the correct order of meta modules is
crucial. Therefore this functionality is not exposed to novices, and by default, the system
includes a sensible choice. Nonetheless, everything in our system is configurable so that
experienced users may modify it.

5.5 Guaranteeing a Valid Model

In Section 4.2, we established that models could expect a particular input In on which
they operate for producing their output On. Even though the passed input I ′

n can be a
superset of the required input (I ′

n ⊇ In), the required In must still exist inside the input.
We want to guarantee this property so that modules can rely on the system, ensuring
that the input satisfies the required constraints. We achieve this with the applyInit
meta-module.

The applyInit meta-module is a rather basic, but important, module. It guarantees
that on an invocation of the model track, all requested model properties already have
values. The guarantee stems from the enforcement of the type system. Namely, every
module must include an initModel property that has to abide by the same type. As
such, the applyInit meta-module just wraps the update function. This wrapped
function passes a combined object containing the properties of the initModel as fallback
values overwritten by the properties of the passed model down the actual update function.
In this way, an important assumption for a module implementor holds: every property
described in the model type exists at runtime.

45

5. Implementation

5.6 Path Resolution

For communication between modules we use a resolution scheme to map variable names to
values. This is handled by the resolve meta-module. It resolves the path specifications
of the data stores that a module requests. This functionality is integral to more complex
visualizations as it allows scoping of model and view. Usually, the complete visualization
operates in the root scope, meaning that all modules receive and provide their data from
the top level of the model, or view respectively. Communicating over this root scope is
essential, as it offers a default space for transferring broadly shared data.

For example, Three.js has a scene object where all rendered elements must register. At
the beginning of the pipeline, a module provides such a scene object and puts it in the
root scope to provide easy access in all subsequent modules. However, if a user wants to
render two scenes simultaneously, a conflict occurs if both scenes are placed and expected
under the same location.

However, also in simpler setups scoping is critical. This can be seen, for example, if two
simple model definitions as in Listing 5.4 exist. If these two models placed their data in
the root scope, one position property would overwrite the other one. The modules
defining these models can have a default scope that is different from the root scope to
solve this problem. For example, the module defining the box model would save its model
inside the box scope. Likewise, the module defining the sphere model would save its
model inside the sphere scope by default. Now that the two models are independent,
they form a structure inside the root model as seen in Listing 5.4b.

type BoxModel = Model<{

dimensions: Vector3;

position: Vector3;

}>;

type SphereModel = Model<{

radius: number;

position: Vector3;

}>;

(a) Model type definition

box: {

dimensions: Vector3;

position: Vector3;

},

sphere: {

radius: number;

position: Vector3;

},

// ...

(b) Model types inside the root model

Listing 5.4: A simple box and sphere model definition.

Equally important is, how modules access each other. As mentioned in Chapter 3, they
communicate via the two stores: the model and the view. So a module has to state
somehow that it requires specific information from those stores. The system accomplishes
this via the modelPaths and viewPaths properties of the module. The type system
guarantees these two properties to have at least one element each: the module’s own model
and view. Furthermore, if requirements are defined in the type definition of the module,

46

5.7. Module Handling

an equal number of additional fields in the modelPaths or viewPaths array have to
exist. Each field of the two path properties is an array of strings defining a path into the
model, starting from the root node. Paths of the two sub-models in Listing 5.4b would
be ["sphere"] and ["box"] . Deeper paths are just arrays with more entries. For
example, the radius of the sphere sub-model is located under ["sphere", "radius"] .

The path-resolve meta-module resolves the requirements of the modules in the respective
update and view function. From the module creator’s perspective, the meta module
acts like the injector of the popular dependency injection pattern [Fow04]. Conversely, an
implemented module acts as the client by requesting certain other stores to be accessed.
The module does this by stating the types of the stores it expects in a specific order.

It is the user’s responsibility to link to the correct paths whenever the de-
faults need to be overwritten. This responsibility is a conscious design choice. An
alternative would be that a module supplies a list of names (or actual references) ref-
erencing the required modules in the same fashion as the DSL references the pipeline.
However, such a system could not contain multiple instances of the same module, which
is a useful property. This can be illustrated by a simple copy-data module that takes
the data from a specific path and writes it to another model path. It would be quite
surprising for the user, if that module could only do that copy operation once with a
fixed path inside the pipeline. So we certainly need a user for wiring (connecting) the
modules.

Another approach to that might be to bind inputs and outputs of modules to variables.
One could specify that the copy-data module reads from x and writes to y. The next
module would then read from y and write to z. Therefore, the user would specify named
storage locations that the system, in general, would translate back to paths inside the
stores. For avoiding conflicts with actual data, such variables could use specific prefixes
like __var_x: inside the model. In practice, the result of this approach would again
be a path-based solution. That is the reason why we choose to rely on paths directly
for wiring up the modules. The described variable system is then just a subset of our
more general approach. By taking this more general choice, a meta module can easily
implement the mentioned variable system as an abstraction layer of the path system.
Additionally, the path system offers an explicit view of what the system does, which
helps users to understand the control flow faster.

5.7 Module Handling

With the system we covered until now, users can already create their own modules.
However, we want to ease the module creation as much as possible and also give users
the guarantees we discussed through the type system. This feature requires an optional
layer that translates between how the system expects to call the modules and how users
write them. We construct this layer through the handle meta-module.

47

5. Implementation

The handle meta-module builds the link between the system’s internal framework and
the specification of a module by a user. The system expects simple update and view

functions with certain parameters as seen in Listing 5.5. For the update function, the
parameter list consists of the message, which includes the message type and the message
payload, as the first parameter and a list of required models as following parameters
(at least one element for the own model). The view function takes the own model
as the first parameter, then a change-set, and lastly a list of required views as the
following parameters (also at least one for the own view). Noticeable is the choice of only
incorporating one, namely the own model, as input for the view function.

type UpdateFunction<T extends ModelModuleType> = (

msg: Message<any, any>,

...m: ModelRequirements<T>

) => ModelOf<T>;

type ViewFunction<T extends ViewModuleType> = (

m: ModelOf<T>,

c: ChangeSet<ModelOf<T>>,

...v: ViewRequirements<T>

) => ViewOf<T>;

Listing 5.5: Update and view function type definition.

This choice has two reasons: First of all, only one parameter can syntactically be the
rest parameter (indicated by the "..." before the parameter name), which has to be the
last parameter of the function signature. The rest parameter translates to an arbitrary
number of actual parameters passed to the function. In the view function, the required
views already take the spot of the rest parameter, so the required models would have
to be specified in a different, more convoluted fashion. The second reason for taking
this approach is to simplify the system’s execution model and the user’s mental model.
The user expects only one model, and the system only passes one model down the view
function. If a module requires data from a different model to access inside the view
function, a simple approach exists: The module registers the other model as a required
model so that the module has access to it inside the update function. Then this function
puts a reference to the foreign model inside the own model. Therefore the view function,
having only access to the own model, can still access the foreign model.

5.7.1 Update

While the definitions in Listing 5.5 provide a simple calling interface for the system, from
the perspective of a module implementor, they have several drawbacks. The update
function accepts all messages type-wise, and also the system passes all messages to
every module. Therefore the first task most implemented update functions would do is
deciding what messages are relevant for the module and only handling those. This task

48

5.7. Module Handling

is what the handling meta-module provides for describing the update step. Instead of
the update function, it expects modules to have an update object, the update handler
(see Listing 5.6).

type HandledUpdateFunction<T extends ModelModuleType, P> =

(payload: P, ...m: ModelRequirements<T>) => ModelOf<T>;

type UpdateHandler<T extends ModelModuleType> = {

[K in MessageType<T>]: HandledUpdateFunction<T, T['message'][K]>;

};

Listing 5.6: Type definition of the update handler.

1 update: {

2 INIT: () => {

3 // do some computation

4 return newModel;

5 },

6 RESIZE: canvasSize => ({ canvasSize }),

7 MOUSE_MOVE: mouseMoveListener,

8 CLICK: (point, model) => ({ ...model, point })

9 },

Listing 5.7: Example of an implemented update handler.

This update handler has to have properties for all message types it expects (i.e., the module
wants to handle). The values of these properties are "HandledUpdateFunctions".
They look similar to the normal update functions. However, instead of taking the whole
message object as a parameter, they only specify the payload respective to the message
type defined as the property name. Defining updates in such a way is very compact
and clear, as seen in Listing 5.7. Thanks to JavaScript’s arrow function expressions it is
possible to write short functions in one line (see Line 6, 8). The syntax also supports
more complex functions that span multiple lines (as in Line 2), but long functions clutter
the update definition. Instead, we recommend referencing a function defined elsewhere
as in Line 7, which gives a concise overview of what happens on the incoming messages.

Given such an update handler, the handle module checks whether an incoming message
type exists in the update handler. If yes, the handle module executes the update handler
and unpacks the payload of the message. If not, the handle module just skips the message
and returns to the caller early.

49

5. Implementation

5.7.2 View

Similarly, the handler module augments the view function with a view handler (see
Listing 5.8). Here the module can specify functions for the four change states from
Section 4.6 (Add, Update, Remove, None) as well as an additional state, Always. The
respective functions are called if the model changes in the specified way (see Algorithm 5.1).
The signatures of these view functions differ from the normal view function in Listing 5.5,
in that they skip the second parameter, the change-set, as it is not needed. Additionally,
the optional function for the Always state is, as the name implies, called in any case after
the normal case (one of the four change states). This Always case is useful to reduce
code duplication if a module wants to execute a function in all branches. For example,
the render module uses this functionality to execute the render call in all cases.

1 type ChangedViewFunction<T extends ViewModuleType> = (

2 m: ModelOf<T>,

3 ...a: ViewRequirements<T>

4) => ViewOf<T> | void;

5

6 type ChangeHandler<M, T extends ViewModuleType> =

7 (T extends ModelModuleType ?

8 (M extends object ?

9 { [K in keyof M]: ChangeHandler<M[K], T>; }

10 : never) // kill else branches, move to ChangedViewFunction

11 : never)

12 | ChangedViewFunction<T>;

13

14 type ViewHandler<T extends ViewModuleType> = {

15 Add: ChangedViewFunction<T>;

16 Remove: ChangedViewFunction<T>;

17 Update: ChangeHandler<ModelOf<T>, T>;

18 None?: ChangedViewFunction<T>;

19 Always?: ChangedViewFunction<T>;

20 };

Listing 5.8: Type definition of view handler.

In the same vein as the previously mentioned update handler, the view handler can
supply functions in-line (see Listing 5.9, Line 11) or reference them (see Line 2).

Handling of the update stage happens differently to the other changes. In addition to
defining a view function directly, it is also possible to supply an object, the change handler.
This change handler is guaranteed to define functions for the complete structure of the
changed model by the type system (see Listing 5.8, Line 6). The change handler requires
a view function or an object containing all the model properties at the same depth. For
every property of the model, the same requirement applies recursively. In the end, there
always exists an executable view function. For example, in Listing 5.9 a view handler for a

50

5.7. Module Handling

1 view: {

2 Add: initView,

3 Update: {

4 radius: (m, v) => {

5 v.mesh.scale.set(m.radius, m.radius, m.radius);

6 },

7 position: (m, v) => {

8 v.mesh.position.set(m.position.x, m.position.y,

m.position.z);→֒

9 }

10 },

11 Remove: (_, v) => {

12 v.mesh.parent?.remove(v.mesh);

13 v.geometry.dispose();

14 v.material.dispose();

15 },

16 },

Listing 5.9: Example of an implemented view handler.

simple sphere module is defined. The Update change state of this view handler references
a change handler instead of a view function. Therefore all properties of the respective
model of the sphere module (Listing 5.4) either have to have view functions directly or
sub-objects. The former is the case in the example of Listing 5.9. Alternatively, the
position property could reference an object with different view functions for the three
resulting properties x, y, and z. For the radius property, this would not be possible,
as it is a primitive type (number) without the possibility to subdivide it further.

With this selective change handler, the view can react in a granular fashion to changes
in the model. If two or more properties of a model update simultaneously, for example,
the radius and the position, all relevant view functions get executed, but their
order is not guaranteed. This case should not be a problem as the view functions
should not have order dependencies, but it is still something one must consider in the
implementation. Usually, iterating over the properties happens in the same order as they
are defined, which would mean that the execution order should be consistent. However,
this behavior is no hard guarantee by the ECMAScript standard, so dependencies have to
avoid this ambiguity. If a predefined order is needed, the update order must be handled
one level higher.

Deciding which view function to call is not as simple as it might seem at first. The
algorithm in which the handle module decides this is given in Algorithm 5.2. First,
the algorithm discriminates between a simple and a complex change. The change-set
is a simple change if it is one of the elementary change enums (Add, Update, Remove,
None). If, on the other hand, the change is an object with properties, then it is classified
as a complex change. In the former case, the simple change, the corresponding view

51

5. Implementation

function is called, if it exists. However, if this is not possible because the view handler’s
corresponding entry is an object, all of its containing view functions are called. Whenever
a complex change happens, two different scenarios may arise. First, we could also have a
corresponding change-handler object for this complex change. In this case, the properties
in the complex change-set trigger executions of the corresponding functions in the change-
handler object. The second possibility is that there only exists a single view function
instead of a change handler. In this case, the view function is simply called directly.

Algorithm 5.2: Resolving the view functions for a given change-set C.
Input: A view handler H, a model M, a change-set C, and view-requirements V ∗

Output: View Vnew

1 Function resolveViewHandler(H, M, C, V ∗) is
2 if C ∈ {Change.Add, Change.Update, Change.Remove, Change.None} then
3 handler ←− H[Change(C)];
4 if handler 6= null then
5 Vnew ←− callAllHandlerCases(handler, M , V ∗);
6 end

7 else
8 Vnew ←− resolveComplex(H[Update], Change.Update, M, C, V ∗);
9 end

10 if Vnew = null then
11 Vnew ←− V ∗

[0];
12 end
13 if Always ∈ H then
14 V ∗

[0]←− Vnew;
15 Vnew ←− H[Always](M, V ∗

);
16 if Vnew = null then
17 Vnew ←− V ∗

[0];
18 end

19 end
20 return Vnew

21 end

52

5.7. Module Handling

Input: A change handler handler, a model M, and view-requirements V ∗

Output: View Vnew

1 Function callAllHandlerCases(handler, M, V ∗) is
2 if isFunction(handler) then
3 return handler(M, V ∗

)

4 else
5 foreach p ∈ handler do
6 callAllHandlerCases(handler[p], M, V ∗)

7 end
8 return V ∗

[0]

9 end

10 end

Input: A change handler handler, a target change target, a model M, a
change-set C, and view-requirements V ∗

Output: View Vnew

1 Function resolveComplex(handler, target, M, C, V ∗) is
// just flat change (object not complex)

2 if C = target then return callAllHandlerCases(handler, M, V ∗);
// different flat change we don’t care about

3 if C ∈ {Change.Add, Change.Update, Change.Remove, Change.None} then
return;

4 if isFunction(handler) then
5 return handler(M, V ∗

)

6 else
7 foreach k ∈ C do
8 cur ←− C[k];
9 if k ∈ handler then

10 result←−resolveComplex(handler[k], target, M, cur, V ∗);
11 if result 6= null then
12 V ∗

[0]←− merge(V ∗
[0], result);

13 end

14 end

15 end

16 end

17 end

53

5. Implementation

5.8 Parsing

Translating the DSL to the model and vice-versa is what we define as parsing. If modules
support parsing, they store their state visible to the user. Therefore users can modify
the state through the DSL and thus configure the module’s functionality. For modules
to support parsing, the system requires them to provide a parser and unparser object.
Modules that do not provide such objects are expected to handle their parsing themselves
or refrain from participating in the parsing, effectively isolating their data from the user.

5.8.1 Parser - from DSL to Model

At the beginning of the visualization execution, the system passes the (potentially scoped)
input DSL to all modules through the INIT message. The parser module intercepts this
message and parses the input DSL by utilizing the parser object, which takes the DSL
as input and outputs a corresponding model. The type definition of the parser object
can be seen in Listing 5.10. At the center of this type definition is the ParseFunction,
which simply takes any input and outputs an enforced T . A module providing a parser
must supply a Parser of the generic type matching its model type. Therefore at the
root level, the generic type T of the Parser is the model type. A Parser is either a
ParseFunction that directly takes the input and outputs a matching T , or it is an
object. If it is an object, it has to have an entry for every property of the given T . For
every property a ParseFunction or alternatively a Parser object itself must exist.

type ParseFunction<T> = (v: any) => T;

type Parser<T> =

| {

[P in keyof T]: T[P] extends object ? Parser<T[P]> :

ParseFunction<T[P]>;→֒

}

| ParseFunction<T>;

Listing 5.10: Type definition of the parser.

This recursive definition allows module creators to implement parsing hierarchically. For
example, suppose a parser implementation of the simple sphere model in Listing 5.4b. As
input DSL we choose an object containing a radius of string and a position given
as an array as seen in Listing 5.11a. Implementing this parser can happen in different
ways. The most straightforward, but broad, approach is a simple parsing function
outputting the complete model (radius and position properties). Thanks to the
arrow function syntax, this can still look surprisingly concise as Listing 5.12a shows. A
more granular approach, would be an object containing two functions, one for radius
outputting a number and one for position outputting a Vector3 (see Listing 5.12b).
If instead of the input DSL of Listing 5.11a, we would have the input DSL Listing 5.11b

54

5.8. Parsing

(position is an object with x, y, and z properties), we could go one step deeper. So
instead of a function for the position property as a whole, we have functions for all
properties of the position, namely x, y, and z as seen in Listing 5.12c. In that way,
we completely delegate the parsing functions into the leave nodes.

{

radius: "0.5",

position: [0, 5, 2]

}

(a)

{

radius: 0.5,

position: { x: 0, y: 5, z: 2 }

}

(b)

Listing 5.11: Possible input DSLs for the simple sphere model of Listing 5.4b.

(a) const modelParser: Parser<SphereModel> = raw => ({

radius: Number(raw.radius),

position: {

x: Number(raw.position[0]),

y: Number(raw.position[1]),

z: Number(raw.position[2])

},

});

(b) const modelParser: Parser<SphereModel> = {

radius: Number,

position: raw => ({ x: raw[0], y: raw[1], z: raw[2] })

};

(c) const modelParser: Parser<SphereModel> = {

radius: Number,

position: { x: Number, y: Number, z: Number }

};

(d) const modelParser: Parser<SphereModel> = {

radius: Number,

position: parser.toVector3

};

Listing 5.12: Different parser implementations for a simple sphere model.

Now parsing a Vector3 is a common operation and supporting both the array notation
of Listing 5.11a and the property notation of Listing 5.11b offers the most flexibility for
the user. This is incorporated into Listing 5.12d, the final and most compact, approach.
Here the toVector3 function of the parser module can accept an array or an object

55

5. Implementation

and returns the resulting Vector3. By supplying such utility parsing functions, complex
parsers can rely on a set of standard types that have the additional benefit of offering a
consistent input DSL for the user.

5.8.2 Unparser - from Model to DSL

The unparser is the object specifying the inverse operation of the parser. Hence its
definition is closely related to that of the parser (Listing 5.10) as seen in Listing 5.13. The
system needs the parser’s inverse operation for an essential mechanism. This mechanism
is the process of getting changes out of the visualization and feeding them back into
the DSL, thus enabling interactivity. Without this unparser, the user would only note
changes in the system’s state visually. However, to facilitate interactivity and taking
snapshots (by copying the DSL), the user must also get a textual representation. In our
demo examples (see Section 6.1), this is done by a split view, one side showing the DSL
and the other one showing the visualization. Alternatively, the DSL could also solely
run in the background and supply the user with the needed textual representation on
demand (e.g., the user wants to take a snapshot, so he clicks a button that places the
current DSL into the clipboard). Regardless of where the current DSL exists, it must
update according to the visualization state.

type UnparseFunction<T> = (v: T) => any;

type Unparser<T> =

| {

[P in keyof T]: T[P] extends object ? Unparser<T[P]> :

UnparseFunction<T[P]>;→֒

}

| UnparseFunction<T>;

Listing 5.13: Type definition of the unparser.

Whereas the parser object is used by the parser meta-module, the unparser object is
used by a regular module, the source module. In this way, users can easily decouple
the back-translation functionality, when it is not be needed. This decoupling might be
useful for performance-critical applications as the source module produces additional
overhead per frame. The source module ignores the update stage and only acts in the
view stage, as objects listening to changes of the DSL may be external ones. As such, the
view function works as follows: Initially and every time the pipeline changes, the module
creates a function object called unparseFunction that is responsible for taking the
model as input and applying the hierarchically structured unparser of all modules that
provide an unparse object. Modules that do not provide this object effectively hide their
model information in this stage. This strategy of opting-in for the unparsing process is a
conscious choice.

56

5.8. Parsing

An alternative would be that parts of the root model that are not referenced in unparser
objects are simply parsed into the DSL "as is." Consequently, modules that have model
information that should not exist in the DSL (e.g. binary data) would have to take
the route of opting out of the unparsing process somehow. Moreover, the unparsing in
such a scenario could facilitate the toJSON function. If JSON.stringify encounters
a toJSON function while operating on an object, it uses the function for converting the
object to a JSON string instead of the usual generic approach. So the type system could
require parsers to supply this function for all objects resulting from the parsing process.
The described hypothetical method seems like a simple and intuitive solution for the
unparsing mechanism. Nonetheless, it has several drawbacks that led to the decision of
implementing our system differently. First, using the toJSON approach, while simplifying
the unparsing implementation could complicate the normal update-loop invocation as it
requires the creation of new models. Therefore all modules would have to make sure to
persist potential toJSON properties. Second, using this simplification mechanism, the
system would be restricted by the JSON.stringify implementation, which only offers
rudimentary styling possibilities.

Instead, our approach with the unparser offers a few significant benefits: Because we do
not want to restrict ourselves by outputting a formatted string, we write the unparsed
model back into the root view-store as a JavaScript object. Any other code that has
access to the view, including the system itself, can parse it in a way that suffices its
purpose in the best way. For example, for GUIs, a beautified JSON can be emitted while
a minified version can be sent for network transmission.

A relevant aspect of the unparsing system is its performance. Whenever the pipeline
changes, the unparseFunction needs to be recomputed. Since pipelines rarely change,
if at all, runtime overhead is low. For efficiently performing the actual unparsing, the
process calculates a model patch. This patch is the subset of the model that is not directly
or indirectly a children node of a Change.None in the respective change-set. Therefore
the patch is usually smaller than the whole model after this step, which speeds up the
subsequent computations. If the patch is an empty object or null, the unparsing process
stops immediately. Next, the previously created unparseFunction takes the patch
as input and computes the unparsed patch. This step identifies the modules’ unparse
functions that have overlapping models and executes the respective functions for each of
them. Noteworthy in this step is the reduction of initial values. As initial values for the
modules fill the model automatically (Section 5.5), they are not needed to reconstruct
the visualization (e.g., if radius has the value 1 in the current model, but 1 is also
the initial value). Therefore, the unparseFunction skips over model entries that are
identical to the initial models provided by the modules. Again, if the resulting output of
the unparseFunction is null or empty, the process aborts. Finally, the source gets
updated, and the system notifies all listeners of the change.

57

CHAPTER 6
Evaluation

In this chapter, we evaluate our system in terms of the envisioned design goals (Section 3.1).
First, we want to analyze whether the system accomplishes what we created it for: creating
interactive 3D visualizations with a descriptive DSL. To analyze this, we provide case
studies in Section 6.1, that answer the following questions:

1. Is the system applicable to representative use cases?

2. Is the system sufficiently expressive for creating interactive 3D visualizations?

As our approach to visualization is high-level and declarative, the system’s execution
clearly has some cost. The description needs to be interpreted and mapped to concrete
visualization implementations. Therefore, the second part of the evaluation concerns the
following question:

Does the system have system-intrinsic overheads limiting the applicability in terms
of performance?

We answer this question in Section 6.2 by measuring the performance and analyzing the
asymptotic overhead that our system introduces.

Lastly, in Section 6.3, we compare our system to other approaches and describe how our
approach fits into the larger landscape of visualization tools. This external evaluation
focuses on the aspects of performance, expressivity, and usability. In general, this section
answers the following question:

In which situations does our language offer added value in comparison to other
approaches.

59

6. Evaluation

6.1 Use-case Study

To evaluate our system’s practicality for visualizing data, we show its different func-
tionalities using case studies. The case studies focus on various aspects of the system.
Therefore, this part of the evaluation examines whether the system is a useful tool for
creating interactive 3D visualizations.

Each of the example applications focuses on a particular aspect of the problem domain:

• The first example (Section 6.1.1) shows the system’s general working, how to write
a simple interactive visualization by creating a custom module and how to extend
it with custom inputs, domain logics, and interactions.

• In the second example (Section 6.1.2), we focus on real-world data and present
the construction of a volume-visualization with our system. Since volumetric data-
visualization is data-intensive, this showcases how the system handles vast amounts
of data.

• In the last example (Section 6.1.3), we show how to create mapping functions with
our system that map data to the visual attributes of a point cloud. Furthermore,
we integrate an external visualization library for 2D visualizations and implement
bidirectional communication with our system resulting in a linked view.

6.1.1 Case study #1 - Sphere

The sphere case-study uses the most basic setup: a single sphere (see Figure 6.1).
Visualizing this sphere shows how a module operates inside the system using a simple
example. The module managing the sphere defines a model, the immutable data store,
for basic properties such as position, color, and radius. It parses these properties from
the DSL and creates a geometrical Three.js object from them. It reacts to raycasting
messages emitted from another module and potentially changes its model. When such a
model change occurs, either from the sphere module itself or from outside, the module
reacts to these changes and updates the Three.js object accordingly. Therefore, this
example shows the whole system event-loop from the point-of-view of a module.

This case study also shows another aspect of the system: The standard approach to
custom interactions in our system is to write a module that encapsulates the interaction
logic. In the example, the sphere module reacts to messages from the raycasting module.
Additionally to this standard approach, we also show a second method for creating
interactivity by directly describing it inside the DSL. Using this method, a user can easily
react to incoming messages and change the model without in-depth knowledge of the
system.

60

6.1. Use-case Study

Figure 6.1: Case Study #1, Sphere. The left side shows the visualization description
(enlarged in Listing 6.6), while the right side shows the resulting rendering. Changes to
the description are immediately reflected in an updated visualization and vice versa.

Sphere Module

Next, we show the implementation of the module, which is exactly the code, visualization
authors need to write to create the DSL described in Figure 6.1. We start by defining
the type for the two data stores: the model and the view. Those type definitions are
shown in Listing 6.1. For the model type-definition, we must identify the data types
representing the state of the module. In this example, the model consists of the basic
properties of radius, color, and position. Additionally, two optional properties onHover
and afterHover can recursively contain models of the same type. As hinted by the
name, the two properties will later define how the sphere should change when the raycast
of the user’s mouse enters or exits the sphere.

The view references the mutable state, which is required for rendering. It includes
references to the required properties such as GPU buffers or DOM elements. As we use
Three.js for rendering, we need references to some Three.js objects to change the sphere’s
appearance and deallocate the GPU buffers after use.

Now we have all the information required for constructing the module type-definition (see
Listing 6.2). For the example, this definition consists of five fields. First is the message
field. The model will only handle raycast messages, thus we do not define additional
ones. Therefore, we reference the message object of the raycast module. Next is the
model where we supply the SphereModel. We do not have any model requirements (no
additional data from previous pipeline stages is needed), so we supply an empty array.
For the view, we reference the SphereView, and finally, for the view requirements,
we supply an array containing one element for the SceneView. The SceneView is

61

6. Evaluation

7 type SphereModel = {

8 radius: number;

9 color: Color;

10 position: Vector3;

11 onHover?: Partial<SphereModel>;

12 afterHover?: Partial<SphereModel>;

13 };

14

15 type SphereView = {

16 material: THREE.MeshStandardMaterial;

17 mesh: THREE.Mesh;

18 };

Listing 6.1: Type definition of the model and view of the sphere module. The first type
defines all properties needed to define the scene, while the second one represents all data
structures needed for rendering the view.

20 type SphereModuleType = {

21 message: raycast.RaycasterMessage;

22 model: SphereModel;

23 requirements: [];

24 view: SphereView;

25 viewRequirements: [scene.SceneView];

26 };

Listing 6.2: Type definition of the module type for the sphere module. All the needed
type information for the module is supplied: The types of the messages it handles, a
reference to its model and view type, and references to external models and views that
are required.

essential because it provides a Three.js scene object where all rendered objects must be
registered. By declaring the SceneView to be a view requirement, the view function
can access the Three.js scene object stored in the SceneView. This scene object is the
root of Three.js’s scene graph, where all rendered objects must be registered.

To guarantee valid data at all times, even if some values are not defined in the visualization
specification, we provide an initial model (see Listing 6.3, Line 28). It contains the fallback
values for the three required properties. Also, the initial view must be specified (Line 34).
Other than for the model, the initial view is not an object, but a function returning
the initial view. The function expects the model and view of the sphere as well as
the SceneView as input. Taking these parameters, it creates the Three.js object for
rendering the sphere and appends it to the scene object from the scene view.

62

6.1. Use-case Study

28 const initModel: SphereModel = {

29 radius: 1,

30 color: Color.white,

31 position: Vector3.zero,

32 };

33

34 const initView = (

35 m: SphereModel,

36 _: SphereView,

37 sceneView: scene.SceneView

38) => {

39 let geometry = new THREE.SphereGeometry(1.0, 48, 24);

40 let material = new THREE.MeshStandardMaterial({

41 color: new THREE.Color(m.color.r, m.color.g, m.color.b)

42 });

43

44 let mesh = new THREE.Mesh(geometry, material);

45 mesh.position.set(m.position.x, m.position.y, m.position.z);

46 mesh.scale.set(m.radius, m.radius, m.radius);

47 sceneView.scene.add(mesh);

48

49 mesh.userData.module = module;

50

51 return { material, mesh };

52 };

Listing 6.3: Initial model and view for the sphere module. The initial model is a standard
object, while the initial view is a function taking the model and other dependencies as
input.

To translate between the DSL and the model, we need a parser and an unparser (see
Listing 6.4). The former translates from the visual description to the model, and the
latter translates the other way around. Enforced by TypeScript’s type system, we have
to provide the respective parsing functions for all required properties.

Finally, we define the core of the sphere module, the module object itself (see Listing 6.5).
This object is the central point from which the type safety originates. By specifying the
module type to be StandardModule<SphereModuleType>, the complete substruc-
ture and all enforcements onto its properties arise. First of all, we specify the name of
the module. The core-module uses this name field for the look-up when reading the
pipeline description. Following this property, the module object references the initial
model, the parser, and the unparser. Subsequently, we define the update property.
This property specifies the update function: Which messages result in what kind of
model change. Here we need to handle all messages specified in the message field of
the module type. In our case, these are the messages emitted by the raycasting-module:

63

6. Evaluation

54 const modelParser: parser.Parser<SphereModel> = {

55 radius: Number,

56 color: parser.toColor,

57 position: parser.toVector3,

58 onHover: parser.recursivePartialParse,

59 afterHover: parser.recursivePartialParse,

60 };

61

62 const modelUnparser: parser.Unparser<SphereModel> = {

63 radius: r => r,

64 color: c => [c.r, c.g, c.b],

65 position: p => [p.x, p.y, p.z],

66 onHover: parser.recursivePartialUnparse,

67 afterHover: parser.recursivePartialUnparse,

68 };

Listing 6.4: Parser and unparser of the sphere module. Recursively, the parser contains
all information to provide the complete model, in this case by having a parsing function
for each field.

RAYCAST_INTERSECTION_ENTER and RAYCAST_INTERSECTION_LEAVE. Handling
them requires us to provide update handlers, i.e., functions that take the message payload,
and the model as input and return a (potentially new) model. For both messages, we
check whether or not to update the model depending on the incoming raycast message. If
it contains a reference to our sphere, the update returns a modified model. In the other
case, the update ignores the message and returns the input model. The view field of the
module object describes the view handler, reacting to changes in the model. The Add
property references what happens when the visualization description initially adds the
sphere data into the model. Therefore, we supply the previously described initial view
function. Inside the Update field, we further distinguish between the different fields
that can update. In all cases, we get the model with the new values and update the
Three.js objects accordingly. This setup completes the control flow from user change to
visualization update. Therefore, if a user changes the model, for example, the sphere’s
position, the visualization updates. The last field of the view property is Remove. The
function referenced under this field handles the clean-up of the Three.js resources so that
the GPU can release the allocated buffers. After the view property, the last information
the module needs are the paths for the data stores so that the module can find them. For
the model paths, we only supply the first element, the sphere model’s path. In contrast,
the view-paths property has two elements: the path to the sphere view and the scene
view-path.

At this point, the module is complete. Everything is set up so that the pipeline property
in the visualization description can reference it by its name (see Listing 6.6 Line 27).
Furthermore, users can parameterize the sphere module by the sphere property in the

64

6.1. Use-case Study

70 export const module: StandardModule<SphereModuleType> = {

71 name: 'sphere',

72 initModel: initModel,

73 parser: modelParser,

74 unparser: modelUnparser,

75 update: {

76 RAYCAST_INTERSECTION_ENTER: (p, m) => {

77 if (m.onHover && p.userData.module === module) {

78 return { ...m, afterHover: m, ...m.onHover};

79 }

80 return m;

81 },

82 RAYCAST_INTERSECTION_LEAVE: (p, m) => {

83 if (m.afterHover && p.userData.module === module) {

84 return { ...m, ...m.afterHover };

85 }

86 return m;

87 },

88 },

89 view: {

90 Add: initView,

91 Update: {

92 radius: (m, v) => {

93 v.mesh.scale.set(m.radius, m.radius, m.radius);

94 },

95 color: (m, v) => {

96 v.material.color.setRGB(m.color.r, m.color.g, m.color.b);

97 },

98 position: (m, v) => {

99 v.mesh.position.copy(m.position as THREE.Vector3);

100 }

101 },

102 Remove: (_, v) => {

103 v.mesh.userData = {};

104 v.mesh.parent?.remove(v.mesh);

105 v.mesh.geometry.dispose();

106 v.material.dispose();

107 },

108 },

109 modelPaths: [['sphere']],

110 viewPaths: [['sphere'], viewPath(scene.module)],

111 };

Listing 6.5: Module definition of the sphere module. Here, all the implementation logic
of the module, enfoced by its type from Listing 6.2, must be supplied.

65

6. Evaluation

1 {

2 "camera": {"rotation": [-20, 0, 0], "position": [0, 10, 20]},

3 "sphere": {

4 "radius": 2.5,

5 "color": { "r": 0, "g": 1, "b": 0 },

6 "position": [0, 2.5, 0],

7 "onHover": {"color": [1, 0, 0]}

8 },

9 "events": {

10 "CLICK[m.sphere.radius < 10]": "{ sphere: { radius: m.sphere.radius + 1 }}",

11 "CLICK[p.shiftKey]": {

12 "sphere": {

13 "radius": 2.5,

14 "color": { "r": 0, "g": 1, "b": 0 }

15 }

16 },

17 "KEY_DOWN[p.key == '1']": "{ sphere: { color: { r: 1, g: 1, b: 0 }}}",

18 "KEY_DOWN[p.key == '2']": "{ sphere: { color: { r: 0, g: 1, b: 1 }}}",

19 "KEY_DOWN[p.key == '3']": "{ sphere: { color: { r: 1, g: 0, b: 1 }}}",

20 "KEY_DOWN[p.key == 'q']": "{ sphere: { color: { r: 1 - m.sphere.color.r }}}",

21 "KEY_DOWN[p.key == 'w']": "{ sphere: { color: { g: 1 - m.sphere.color.g }}}",

22 "KEY_DOWN[p.key == 'e']": "{ sphere: { color: { b: 1 - m.sphere.color.b }}}"

23 },

24 "pipeline": [

25 "scene",

26 "perspective-camera",

27 "sphere",

28 "render",

29 "raycaster",

30 "orbit-controls",

31 "key-listener",

32 "argumented-events",

33 "source"

34]

35 }

Listing 6.6: DSL for describing the sphere visualization. It specifies information about
the camera’s orientation, the sphere module as defined in this section, custom events,
and the pipeline.

visualization description (see Listing 6.6 Lines 3-8). Thus, the user can update the
rendered visualization of a sphere in real-time. Last but not least, the module also reacts
interactively to messages from the raycast module.

In summary, this sphere module example showed how users can create modular compo-
nents for visualizing data. Therefore our goal of offering a system powerful enough to
create new modular components that extend the DSL is accomplished.

Reacting to Messages inside the DSL

Our system allows enriching the visualization description by custom sub-DSLs for inter-
actions. In this example we extend the system with the argumented-events module to
support the CLICK and KEY_DOWN callbacks as shown in Listing 6.6. With this module,

66

6.1. Use-case Study

users can react to arbitrary messages from within the DSL itself, providing a concise
method to add interactivity quickly.

The module’s task is simple: When a message passes through the module, it checks
whether it has a property with the message type as the key inside its sub-model. If
it has such a property, it interprets the value as a partial state of the model. The
argumented-events module then applies this partial model to the real model, hence
updating it. An example of this is shown in the case study’s DSL (Listing 6.6) from Line
11 to 16. Here the CLICK message maps to an object with the same hierarchy as the root
model. The module recursively walks down the root model and overwrites the properties
provided in the partial model.

The "argumented" part of the module’s name refers to the square brackets that all the
event keys of the DSL example (see Listing 6.6) contain after the message type. As the
name implies, these brackets contain arguments. Such arguments are valid JavaScript
expressions that evaluate to a boolean value. Arguments have access to two variables: m
referencing the model and p the payload of the message. Whenever the argument evaluates
to true when the respective message arrives, the model gets updated. For example, with
the CLICK message mentioned above, the argument checks if the shift key—stored in
the payload because the payload is a MouseEvent—is pressed. Whereas the events
module can only specify one change per message, the argumented-events module must
handle multiple change specifications for the same message, as there could be different
arguments. Looking at Listing 6.6, this need becomes evident. The description only
specifies two messages: CLICK and KEY_DOWN, but these multiple times with different
values. Without the arguments, the module could only react to the KEY_DOWN event in
general. Therefore one would need to create different messages for each key. Instead, the
allows reacting differently to the same message by inspecting the payload and, in this
specific example, looking at the attached key type.

Additionally, the event entries in Lines 10 and 17-22 of Listing 6.6 show another feature
of the argumented-events module. The values of the event keys are not objects, but
strings. When an event occurs, the strings are evaluated just like the arguments. In
contrast to the boolean value from the arguments, they define an object, which is the
partial model that is later applied to the root model. In the same way as the arguments,
the strings contain JavaScript expressions that can access the model m and the payload p.
This setup results in a powerful way of creating custom interactions not possible with the
object notation used by the event entry in Lines 11-16 of Listing 6.6. For example, the
first event entry in Line 10 listens to the CLICK message emitted when the user clicks
with the mouse. Its argument checks whether the sphere’s radius is below 10. Only then
it applies the value, which results in a dynamic evaluation and increments the sphere’s
radius by 1.

All in all, this approach for user-defined reactions to messages provides a broad range of
interaction possibilities. They can describe changes to the model state in an expressive
fashion. Nonetheless, they are concise and hence enable users to add functionality to the
visualization quickly.

67

6. Evaluation

6.1.2 Case Study #2 - Volume

Whereas the first study showed a purposely simple example, this case study will show
how our system operates on more complex visualizations. Therefore, this study will
examine how feasible the system is for real visualization use cases. The subject of
this case study is the visualization of volumetric data as used in disciplines such as
medicine or non-destructive testing. More concretely, we will visualize the dataset from
Gröller et al. [GGK05]. This volumetric dataset stores one-dimensional density data for
each voxel totaling 652 MB. To visualize it, we will use a raycasting shader from Three.js.
Besides the large dataset and the resource-intensive shader, we will be able to change
shader uniforms from the visualization description. Lastly, with the example of texture
loading, we also show how the DSL’s JSON format enables a natural way of variable
definition.

Figure 6.2: Case study #2, Volume. The DSL on the left side (enlarged in Listing 6.7)
defines the volume’s data source as well as texture used for the transfer function. The right
side shows the final visualization of the stag beetle dataset from Gröller et al. [GGK05].

Handling large Data

Loading large datasets is no easy feat for a garbage-collected language like JavaScript,
especially if it involves a transformation that allocates new objects. In this specific case,
the raw volume data consists of unsigned integers with 12 bits padded to 16 bits per value.
However, we use Three.js, whose WebGL volume shader expects 32-bit floating-point
numbers in the [0, 1] range. Consequently, we need to convert all values while loading
the data and allocate an additional buffer twice the original input size. With the 652 MB
input, we have at least an additional 1.304 GB buffer, resulting in 1.956 GB in total,

68

6.1. Use-case Study

only focusing on the input data’s storage. The runtime allocation of the whole system
will easily surpass the 2 GB mark.

As this loading is such a complex task in this example, we have a whole module managing
just that: the volume-loading module. It reads the input data from the specified file and
converts it to a FloatArray asynchronously. Afterwards, it emits a VOLUME_LOADED

message storing the float data in the message’s payload. The module handles this message
itself by storing the data in its model. This model change triggers the upload to a 3D
texture that finishes with a VOLUME_ARRIVED message, signaling the volume module,
that it can start rendering.

Rendering a Volume parameterized by the DSL

Now that we have the volumetric data on the GPU, we want to render it through a shader
that is linked with the visualization description through the volume module. The shader
used by this module is Three.js’s volume shader. Besides the data and the dimensions of
the volume, the shader takes several parameters:

• The texture representing the transfer function

• A range, restricting the volume data values that map to the transfer function

• The renderstyle - a binary value switching between the two render modes: maximum
intensity projection (MIP) and isosurface calculation (ISO)

• The threshold for the computation of the isosurface (if activated)

We want to modify these shader parameters from the visualization description, so that
users can interactively modify them. The volume module, managing this linkage, has
corresponding entries for its model (see Listing 6.7 Lines 2-8). When they change, the
module updates the shader uniforms accordingly. Due to this linkage, users can change,
for example, the texture to gray, which switches the transfer function to a grayscale
color scheme. Likewise, users can change the renderStyle to iso instead of mip and
immediately see the results when changing the threshold to another value.

Variable Fields in the DSL

One particular property in the volume path of the visualization description, the texture
field, receives special treatment. It references the name of the texture that is itself defined
in the DSL. The definition is found at the texturePaths path that the texture module
manages. While the previously mentioned modules always apply a fixed grammar to the
DSL, this module works differently. Instead of forcing the model to have rigid fields, it
defines its model as an object containing fields with an arbitrary name that have paths to
texture files as values. The texture module then takes this model and loads all the entries,
while preserving the mapping of the file paths to the given names. In this way, other
modules can request textures from the texture module by only providing the texture’s
user-defined name.

69

6. Evaluation

1 {

2 "volume": {

3 "loadPath": "../data/stagbeetle832x832x494.dat",

4 "colorRange": [0, 1],

5 "renderStyle": "iso",

6 "threshold": 0.2,

7 "texture": "color"

8 },

9 "texturePaths": {

10 "color": "../data/cm_viridis.png",

11 "gray": "../data/cm_gray.png"

12 },

13 "camera": {

14 "position": [14, 54, -20],

15 "rotation": [-110, 13, 147],

16 "zoom": 4

17 },

18 "scene": {

19 "grid": true,

20 "backgroundColor": [0.1, 0.1, 0.1]

21 },

22 "pipeline": [

23 "scene",

24 "volume-loader",

25 "texture",

26 "orthographic-camera",

27 "volume",

28 "render",

29 "orbit-controls",

30 "source"

31]

32 }

Listing 6.7: DSL for describing the volume visualization. It specifies the source and
visualization method for the volume data, paths to textures for the transfer functions,
and finally camera and pipeline information.

Altogether, this case study shows that our system can handle not only simple demo
visualizations but also practical visualization cases with large amounts of data. The
example shows how to asynchronously load data and map DSL attributes to shader
parameters that are completely transparent to the user. The underlying modules are
based on the concepts introduced earlier and comprise approximately 250 lines of code
in total, which is roughly what a hand-crafted alternative would need. Lastly, this case
study shows how versatile the visual description inside the JSON format can be with the
texture module’s aid.

6.1.3 Case Study #3 - Point Cloud

The last of the three case studies concerns the rendering of a point cloud. For rendering
this point-cloud, the case study contains a system where users can create complex
mapping functions between the dataset and the points’ appearance. Apart from showing
a different visualization type, this case study also features the most prominent example of

70

6.1. Use-case Study

the system’s strengths. We integrated an external framework for creating 2D charts, Vega

(see Section 2.2.3). This integration highlights the importance of the modularity that
we have built into the system from the start. Integrating Vega enables users to specify
Vega and Vega-Lite definitions inside our DSL. Moreover, our system communicates
bidirectionally with the Vega visualization resulting in a linked view.

Figure 6.3: Case study #3, Point Cloud. The DSL on the left (enlarged in Listing 6.8)
includes a full Vega-Lite description as well as encoding functions that transform the
referenced point cloud data into the visualization on the right. The visualization shows
the 3D point cloud as well as the Vega-Lite 2D chart resulting in a linked view, which
links the brushing (visualized in yellow).

Loading the Point Cloud Data

As we already showed how loading large datasets work in Section 6.1.2, we will use a
comparatively small dataset in this case study. Our choice is the movies.json dataset

71

6. Evaluation

from the Vega examples page [SMWH15]. It contains a JSON array with around 3 200

entries. Each entry represents a movie and is an object containing various fields like the
IMDb rating, the production budget, or the gross profit.

As the Vega sub-model already references the file path to the dataset, we do not want
to specify it again, violating the DRY (do not repeat yourself) principle. Thus, we
reference the Vega file path within the pointcloud model. This approach can be seen
in Listing 6.8, Line 38. The reference has the same syntax as in the previously presented
argumented-events. Namely that m, referring to the model, points to the root of the
model, and hierarchical paths are chains of the point-operator and the fields’ names inside
the model. Hence, with m.vega.data.url we start from the model, go inside the
vega field then further into the data field and finally read the value with the url key.
As a consequence, we arrive at the correct URL reference to the dataset, the same as Vega

uses. Then the pointcloud module—the module containing all the logic concerning
the point cloud—loads this dataset and stores it in its internal model.

Dynamic Encoding Functions

Rendering point clouds from a multivariate dataset involves mapping of the data to the
appearance of the point. Encoding functions, as they are also called in various other
visualization frameworks, create this mapping. While they can be as simple as referencing
a single field, they can become quite complex, for example, by normalizing over all values
or by applying mathematical transformations like logarithms.

For starting with the encoding functions, it is essential to know what properties we want
to encode in the first place. We choose the most common properties, position, color,
and size for this task. Accordingly, the pointcloud sub-model in the visualization
description contains fields for these three properties (see Listing 6.8, Lines 39-49). Only
the size property in the model references an encoding function directly. The other
two properties are objects containing sub-encoding functions. While the pointcloud
module also supports direct encoding functions for the position and color, they would
need to return complex object types because they are not scalars like the size, but objects
with three fields each. Having separate encoding functions for these fields allows users to
easily map different data attributes to different axes or color values, respectively.

In principle, the encoding functions work similarly to the argumented-events module (see
Section 6.1.1) in that they execute short snippets of JavaScript code that are defined
as strings inside the DSL. Likewise, the module supplies the encoding functions with
parameters. However, instead of only executing the encoding function once for every
message, like the argumented-events module does, the pointcloud module must execute
the encoding functions for every data element inside its dataset. Distinct is also the
number of parameters provided to the function. The accessible parameters inside the
encoding functions are:

• model (also accessible as m): the root model of the visualization, enabling the
encoding functions to access everything that is in the visualization’s current state

72

6.1. Use-case Study

1 {

2 "vega": {

3 "$schema": "https://vega.github.io/schema/vega-lite/v4.json",

4 "data": {"url": "../data/movies.json"},

5 "width": 400,

6 "height": 100,

7 "encoding": {

8 "x": {

9 "field": "value",

10 "title": "IMDB Rating",

11 "type": "quantitative"

12 },

13 "y": {

14 "field": "density",

15 "type": "quantitative"

16 }

17 },

18 "transform":[{

19 "density": "IMDB Rating",

20 "bandwidth": 0.1

21 }],

22 "layer": [{

23 "selection": {

24 "brush": {

25 "type": "interval",

26 "encodings": ["x"]

27 }

28 },

29 "mark": "area"

30 }, {

31 "transform": [{

32 "filter": {"selection": "brush"}

33 }],

34 "mark": {"type": "area", "color": "goldenrod"}

35 }]

36 },

37 "pointcloud": {

38 "data": "m.vega.data.url",

39 "position": {

40 "x": "normalize('US Gross')",

41 "y": "normalize('IMDB Rating')",

42 "z": "normalize('Production Budget')"

43 },

44 "color": {

45 "r": "brushed('IMDB Rating') ? 1 : 0",

46 "g": "brushed('IMDB Rating') ? 1 : 0.5",

47 "b": "normalize('IMDB Rating')"

48 },

49 "size": 2,

50 "highlight": {

51 "color": { "r": 1, "g": 0, "b": 0 },

52 "size": 4

53 }

54 },

55 "camera": {

56 "position": [-126, 154, -44],

57 "rotation": [-111, -43, -119]

58 },

59 "pipeline": ["scene", "perspective-camera", "pointcloud", "render", "vega",

60 "raycaster", "orbit-controls", "source"]

61 }

Listing 6.8: DSL for describing the point cloud visualization. It contains a full Vega-Lite

specification. It further describes encoding functions for the point cloud data as well as
camera attributes and a pipeline description.

73

6. Evaluation

• data : a reference to the whole dataset

• index (also accessible as i): the current index of the data entry inside the
dataset

• datum (also accessible as d): the current data point, shortcut for data[index] .

• aggregate (also accessible as agg): a store holding aggregates like the minimum
and maximum value of the fields over all entries.

• brush : an object storing a potential brush range ([brush.min , brush.max])

Additionally to these parameters, the encoding functions also have access to the following
helper functions for routine tasks:

• normalize(k) : shortcut for normalizing a data field by dividing it by the maxi-
mum aggregate while ignoring the minimum aggregate
defined as: datum[k] / aggregate[k].max

• brushed(k) : shortcut for checking whether a data field of the current data point
lies inside the brushed range or not
defined as: datum[k] >= brush.min && datum[k] <= brush.max

When encoding functions do not compile, they use fallback values from the module.
This case can happen, for instance, when the encoding functions do not contain valid
JavaScript or access non-existing variables. The same approach that provides the fallback
values in such cases is also used for another feature: additional encoding functions for
highlighted points. In this example, points are highlighted when the mouse hovers
over them. To draw them visually distinct from the others, they use their own set
of encoding functions. The DSL snippet (Listing 6.8) provides them in Lines 50-53.
Although the highlight-specification in the example uses constants, they are still valid
encoding functions. Of course, instead of these constants, JavaScript encoding functions
can be used. Additionally to those, however, the highlight encoding functions have an
extra parameter they can access, i.e., original . This parameter provides the highlight
function with access to the value the respective default encoding function for that point
would calculate. Due to this feature, users can, for example, take the original color that
the point would have if it were not highlighted and increase the brightness proportionally.

Concluding, the computation of the encoding functions for the points looks as follows:
For the position, we map three different fields to the axes, all of them normalized (see
Listing 6.8, Lines 40-42). The x-axis shows the gross sales inside the US, the y-axis
shows the IMDb rating, and the z-axis shows the production budget. Consequently,
looking down the y-axis on the point cloud shows how the budget correlates with the
movies’ gross sales. The side views (i.e., the views on the x,y-plane and the z,y-plane)
show how money influences the IMDb rating—an indicator of the movies’ quality. All

74

6.1. Use-case Study

three color channels operate on the IMDb rating field. Whereas the blue color channel
represents the same information as the y-axis, the other channels check if the point’s
rating field lies inside the brushed range. Depending on this state, one of two fixed
values is selected. Therefore, when the brushing range changes, the colors of the points
update accordingly. This change can happen either through the visualization description
or through Vega. Admittedly, also, the highlighting could have been implemented by
this approach. Another parameter would have been passed to the shader. In this case,
though, all points would need to be recalculated if the highlight changes.

In summary, we can see that the encoding functions offer users a broad capability for
visually deciding how data is represented. As they are part of the visualization description
themselves, users can change them interactively and immediately see the results, making
them a valuable data exploration tool.

Vega Integration

The Vega integration happens through the vega module, whose model lives inside the
vega scope. Everything inside this scope is a valid Vega description. Therefore, our
DSL is factually a superset of Vega. In this case study, the Vega description visualizes
the movies.json dataset by plotting a density function of the IMDb rating distribution.
Additionally, the visualization features an intuitive brushing mechanism over the x-axis
in the Vega chart.

The vega module also reacts to the changes of its model—the Vega description—by
recomputing the Vega chart. Because of this recomputation, the users can change
the model interactively. For instance, users can modify the bandwidth field, which
specifies the smoothness of the underlying kernel density estimation, and the chart
will automatically update. This feature already provides an interactive mechanism for
modifying Vega visualizations. However, we want to go a step further by communicating
from the Vega visualization to the point cloud and vice versa.

For the case study, we link the brushing state of the data. Hence, brushing the Vega

chart changes the point cloud’s brushed points, and changing the brushed range inside
the pointcloud model also changes the displayed brush range in the Vega chart.
Accomplishing this requires bidirectional messages. We decided to emit the same message
format from both the vega and the pointcloud module. In this format, the messages
have the message type BRUSH with a number tuple as payload. Emitting and receiving
these messages works analogously to the message handling in Section 6.1.1. However,
hooking up these messages with Vega demands a new method. For getting notified
when a user changes the brush state, we use Vega’s signal listener, with which we react
to the brush signal. When the listener is called, we simply emit a message with the
brush signal’s payload. Communicating in the other direction also uses signals. Calling
the signal function on Vega’s view, with a subsequent call to run, which evaluates
Vega, allows our system to change the brushing of the Vega chart when the brushing
information updates from the outside. As a result, users can interact with both the 2D

75

6. Evaluation

visualization of Vega and the 3D visualization, and in both cases, the respective other
visualization changes too.

In conclusion, we created a linked view using all the capabilities of the powerful Vega

framework inside our system. With this linked view, we showed the system’s modularity
and extensibility.

6.2 Performance Evaluation

The performance evaluation analyzes the intrinsic overhead our system introduces com-
pared to traditional, hand-crafted visualizations. This overhead arises from the com-
putations that these traditional visualizations do not need to execute because they
have precompiled logic. In contrast, a dynamic pipeline governs our systems’ execution.
Furthermore, the model’s changes and the system’s reaction to these changes are dynamic
as well. Consequently, they demand performance-intensive runtime computations.

In general, our system introduces overhead in three locations:

• The update step, where messages travel through the pipeline, which produces a
new model.

• The change-set computation by calculating the difference of two models so that the
system knows how the state changed

• The re-play of the changes from the change-set to update the visualization.

In the following subsections, we study these different overhead-introducing computations
by analyzing their impact on the total overhead. Finally, we will give performance
characteristics and metrics of the system so that we can create an informed estimate on
its practical limits.

6.2.1 Update Overhead

Instead of directly modifying the application state, our system stores an immutable
representation of the state, the model. Modules react to user interactions during the
update stage by creating a new immutable state, overwriting the old model. The resulting
cost of these immutable updates depends on the data structure.

The prevalent data structures in the model are objects. In the update stage (see
Section 5.7.1), the module can react to the user interaction and either return the old
model or create a new one. How the module creates the new model is up to the module
creator to decide. Usually, the ...-operator will be used like:

{ ...m, modifiedKey: newValue }

Equivalents of this operator exist in various functional languages like the with-operator
in F#. It allocates a new object and copies all properties from the old object into

76

6.2. Performance Evaluation

the newly created one. Finally, it overwrites the specified keys with the new values.
Copying the properties creates shallow copies. Therefore, the overhead only depends on
the number of properties, not their values. It is O(n) with respect to n, the number of
properties.

Since updating also involves nested updates, the depth of the model tree needs to be
considered. The reason for this is the recursive nature of the update mechanism. If,
for example, a module updates a primitive that lies three levels deep in the module, an
update would look like follows:

{ ...m, key1: { ...m.key1, key2: { ...m.key1.key2, key2: newValue }}}

Such a call results in a computational complexity of O(n ∗ d) with n being the maximum
number of properties for all levels of objects and d being the updates node’s depth. This
overhead might seem large, but usually, n and d does not grow arbitrarily large and is
bound by a small number. The n is bound because objects are not expected to expand
their properties continually. Ìn our experience, the depth of the model is typically limited
to a few levels as working with deeper nested models becomes inconvenient for the user.
However, a module could produce an excessive model depth d that is not reflected in the
DSL. Such an excessive depth could arise, for example, if the model stores a linked-list
where each node is one level deeper down in the model tree.

One particular use case that lends itself to a linked-list implementation is the realization
of an undo/redo system storing, for example, the history of a sub-model. However, in
such an implementation, a module would reuse the existing list and only insert a new
head. Hence, the update overhead is constant (O(1)).

Besides objects, the model may also contain arrays. Large arrays occur prominently
when raw data for the prospective visualization gets loaded into the model. When entries
of the array change or the number of elements updates, modules must create new arrays
and copy all elements so that the system can react to the change. If the array has an
excessive size, the module must clone the complete array (O(n)) even if only one element
changes. In such cases with frequent updates of large arrays, efficient immutable array
data structures can be used (e.g., Straka [Str09]).

All in all, we can see that even though there exists an overhead in the update stage, it
scales linearly to the model size at worst. Due to the reuse of the unchanged branches in
the model and through persistent data structures when needed, the overhead becomes
linearly with respect to the model’s actual changes.

6.2.2 Diffing Overhead

To evaluate the cost of the difference calculation, we take performance measures on a
synthetic test setup. The setup consists of an arguably inefficient implementation of a
scene, where each visualized entity is stored as an extra object in the model. As a result
of this analysis, we can empirically show how many changes can be naively processed

77

6. Evaluation

by the system, i.e., without further optimizing by utilizing better data structures. The
overhead depends on the size of the model.

Therefore, we identified a parameter space of possible scenarios for the model. Generally,
there are two extreme cases for the model that we base the benchmark on: a deeply
structured model type and a flat structure with large fanout. In both cases, the worst-case
scenarios are changes of the leaves, as these changes are computationally the most intensive
ones to compute. Hence, we only change the leaf nodes. There are two parameters
involved with the model’s structure: the tree’s depth and the number of nodes on each
level. To keep the number of possible benchmarks low, we reduce the set of possible trees
by choosing symmetric trees with the same number of children per node. The remaining
parameter that could be relevant for the difference calculation is the number of changes
between two possible model trees t1 and t2. For testing the worst case, we have to assume
that the two models do not share any nodes, preventing speed-ups by early exits. Hence,
the diffing algorithm must visit all nodes regardless and compare them recursively. Thus,
we postulate that this parameter, the number of changes, does not impact the general
performance, reducing the parameter space to the two former parameters.

To verify this hypothesis, we perform a first benchmark with a small number of different
trees on five different change values each, as seen in Table 6.1. As shown in this table,
the choice of children per node in relation to the tree depth is roughly fixed to sum up to
1 million nodes. This relationship exists to ensure that the total computation needed
for each case has a common problem size. Later we normalize the benchmark results
by the actual number of leaf nodes. We choose this number instead of the number of
total nodes, as the inner nodes are only a structural overhead that does not transport
the model’s actual values. Of course, we, therefore, expect the deeper models to impose
an additional overhead.

Depth Children per node Leaf / Value nodes Inner nodes Total nodes
1 1 000 000 1 000 000 1 1 000 001

2 1 000 1 000 000 1 001 1 001 001

3 100 1 000 000 10 101 1 010 101

6 10 1 000 000 111 111 1 111 111

10 4 1 048 576 349 525 1 398 101

20 2 1 048 576 1 048 575 2 097 151

Table 6.1: Tree variations and their node counts for a benchmark analyzing the impact
of the change between the trees.

Even with preliminary test benchmarks, we noticed a performance inconsistency between
the browsers on which we tested the diffing algorithm. With Chrome, the model creation
takes longer while the diffing is faster than with Firefox. Therefore, we measured the
benchmarks on both browsers, doubling the number of benchmarks to run. We selected
Google Chrome (86.0.4240.183) because it is the most used browser at the time of writing.
Additionally, the Chromium framework, which Google Chrome is based on, also serves

78

6.2. Performance Evaluation

as the engine for multiple other browsers like Microsoft Edge and Opera. What we
benchmark with Chrome is the V8 JavaScript engine that is part of Chromium. On the
other hand, we use the Firefox Developer Edition (83.0b7) as an alternative browser. Its
JavaScript engine is called SpiderMonkey.

All following benchmarks were performed on an HP Spectre x360 15 Convertible notebook,
using Windows 10 Home 64-bit, Version: 19041.572 as the operating system. It has an
Intel i7-8705G quad-core processor with a clock speed of 3.10 GHz. The RAM has a
storage size of 16 GB. Finally, for graphical processing, it has an onboard and a dedicated
GPU. These are not used in the benchmarks, however, as we are concerned about the
additional CPU overhead, assuming optimal implementation of the graphic card calls.

For running the initial benchmarks we ran the six trees from Table 6.1 with the five
different change values: 0, 0.25, 0.5, 0.75, and 1. In total, 30 different combinations of
trees and change values exist. Doubling this, because of the two browsers, results in 60
cases to be checked. For this benchmark, we let each of these 60 cases run for 10 minutes.
The results can be seen in Figure 6.4 for Chrome and in Figure 6.5 for Firefox.

We plot five box-plots for each tree case, one for every change-value, showing the diffing
algorithm’s speed for 1 million nodes. As can be seen in these benchmarks, there are
significant outliers. We can see that sometimes, like in Figure 6.4a, the outliers lie
inside the whiskers, and sometimes they are just outside, but most often above the
upper whisker as in Figure 6.4b. In most cases, the interquartile range is tightly around
the median except in Figure 6.4a and Figure 6.4d. Figure 6.4d is especially interesting
because the three middle cases, change values of 0.25, 0.5, and 0.75, have a considerably
higher median than the other two. The outliers also have a distinctive gap in the two
deepest trees, Figure 6.4e and Figure 6.4f, which is probably due to different garbage
collection stages. However, all in all, no stark deviation between the different change
values can be noticed for the Chrome benchmarks.

The Firefox benchmarks look quite different from the Chrome ones, which we will analyze
further with the second benchmark. In this benchmark, we can already see that, compared
to the Chrome ones, not all tree cases are skewed. Instead, Figure 6.5d and 6.5e and to a
lesser degree Figure 6.5c and 6.5f have more symmetric distributions. In the benchmarks
with a lower depth, namely Figure 6.5a and 6.5b, the cases with 0% changes between the
two trees stand out. While in Figure 6.5b, the distribution of the 0% case seems to be
identical with the other cases except for a higher tail, the distribution is quite different in
the Figure 6.5a case. Here, the median takes considerably longer, and also, the variance
is larger.

However, the depth 1 case is unique as it is just a flat object, and because the stark
deviation can only be observed in this one case for the Firefox browser. We conclude
that the percentages of changes between the two trees have no relevant impact on the
benchmarking. Therefore, our initial hypothesis is affirmed. We proceed with a fixed
number of changes and select 50%, half the leaf nodes, as a neutral value.

79

6. Evaluation

0% 25% 50% 75% 100%

0.3

0.35

0.4

0.45

di
ffi

ng
ti

m
e

(s
)

(a) depth: 1

0% 25% 50% 75% 100%

0.08

0.1

0.12

0.14

(b) depth: 2

0% 25% 50% 75% 100%

0.1

0.12

0.14

0.16

di
ffi

ng
ti

m
e

(s
)

(c) depth: 3

0% 25% 50% 75% 100%
0.14

0.16

0.18

0.2

0.22

0.24

0.26

(d) depth: 6

0% 25% 50% 75% 100%

0.3

0.35

0.4

0.45

percent change

di
ffi

ng
ti

m
e

(s
)

(e) depth: 10

0% 25% 50% 75% 100%

0.7

0.8

0.9

1

1.1

percent change

(f) depth: 20

Figure 6.4: Speed of the diffing algorithm on the Chrome browser for tree variations from
Table 6.1, including varying percentages of change.

80

6.2. Performance Evaluation

0% 25% 50% 75% 100%

0.25

0.3

0.35

0.4

di
ffi

ng
ti

m
e

(s
)

(a) depth: 1

0% 25% 50% 75% 100%

0.14

0.16

0.18

0.2

0.22

0.24

(b) depth: 2

0% 25% 50% 75% 100%

0.13

0.14

0.15

0.16

0.17

0.18

di
ffi

ng
ti

m
e

(s
)

(c) depth: 3

0% 25% 50% 75% 100%

0.28

0.3

0.32

(d) depth: 6

0% 25% 50% 75% 100%

0.58

0.6

0.62

0.64

0.66

0.68

percent change

di
ffi

ng
ti

m
e

(s
)

(e) depth: 10

0% 25% 50% 75% 100%

1.3

1.4

1.5

1.6

1.7

percent change

(f) depth: 20

Figure 6.5: Speed of the diffing algorithm on the Firefox browser for tree variations from
Table 6.1, including varying percentages of change.

81

6. Evaluation

For analyzing the relationship between the tree depth and the diffing speed more closely,
we run a more excessive benchmark with a larger number of tree cases. Thus, we add
more intermediate cases to the ones from Table 6.1. Thereby, we arrive at the 12 cases,
shown in Table 6.2, with which we hope to get a better picture of the diffing algorithm’s
performance characteristics. As shown in the table, some combinations of tree depth
with number of children lead to numbers of leaf nodes that are somewhat higher (depth
8, 9, and 13) or lower (depth 7), then the 1 000 000 or 1 048 576 respectively. In any case,
we normalize the results by the actual number of leaves, as with the previous benchmarks.
Nonetheless, we want to point out that these cases might differ slightly from trees with
precisely one million leaves.

Depth Children per node Leaf / Value nodes Inner nodes Total nodes
1 1 000 000 1 000 000 1 1 000 001

2 1 000 1 000 000 1 001 1 001 001

3 100 1 000 000 10 101 1 010 101

4 32 1 048 576 33 825 1 082 401

5 16 1 048 576 69 905 1 118 481

6 10 1 000 000 111 111 1 111 111

7 7 823 543 137 257 960 800

8 6 1 679 616 335 923 2 015 539

9 5 1 953 125 488 281 2 441 406

10 4 1 048 576 349 525 1 398 101

13 3 1 594 323 797 161 2 391 484

20 2 1 048 576 1 048 575 2 097 151

Table 6.2: Tree variations and their node counts for a benchmark thoroughly analyzing
the impact of the tree depth on the diffing time.

We ran each of the 12 tree cases 1 000 times on Chrome as well as on Firefox. The results
of the benchmarks are shown in Figure 6.6. We plot the median number of processed
leaf nodes per milliseconds against the tree depth. Hence, a higher number on the y-axis
means that a higher number of actual values in the model can be processed with the
respective depth. As with the first benchmarks, the result may not surprise at first glance,
as a higher tree depth naturally results in more internal nodes that do not contain values,
which in turn cause more recursive invocations for the difference algorithm. However, the
plot shows some interesting peculiarities. First of all, tree depth 1, a single object where
all leaves are properties, is an outlier with both browsers. Thus, putting one million
properties in one object is slower than a more structured tree with fewer children per
node. Specifically, with Firefox, trees with a depth between 2 and 6 perform better than
the depth 1 case, and for Chrome, depth 2 up to the depth 10 case perform better. In
general, Chrome performs faster on all tree cases except for the special case of depth 1.
The difference between the browsers is also roughly constant.

82

6.2. Performance Evaluation

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0

2,000

4,000

6,000

8,000

10,000

12,000

tree depth

le
af

no
de

s
/

m
ill

is
ec

on
d

(m
s)

Chrome
Firefox

Figure 6.6: Number of leaf nodes the diffing algorithm (see Section 5.1) can compute per
millisecond compared to the tree depth of the model.

Interestingly, Firefox also performs differently on the case with depth 2. It is faster than
with a depth of one, but still below the peak performance at tree depth 3. Only after
that, it follows the expected slowdown as the depth increases. Chrome, on the other
hand, has its highest performance for trees with depth of two.

The takeaways from these comparisons are manifold. First, a flat hierarchy in the DSL
should be strictly avoided, or else the depth 1 special case happens. Our implemented
modules set positive examples by scoping their DSL inside a property named after the
module instead of cluttering the root scope. Thus, we encourage module creators to
follow suit, which gives a tree depth of at least two, avoiding the slow special case. On the
other end of the spectrum, we can see that larger tree depths, for example, six and higher,
are also increasingly slower than their shallower counterparts. This lower performance
should not discourage model creators from using slightly higher depths when the scoping
and clear separation calls for it. The reasoning behind this recommendation is that the
benchmarks are an artificial test setup where all values lie in the highest depth of the
tree, i.e., the leaves. Such a situation is generally not given in a practical case. The
other significant aspect where the benchmark deviates from an expected assumption
is the number of changes. Although the number of changes between the two trees are
fixed at 50%, both trees still have internal nodes with unequal references. Therefore
the diffing algorithm has to visit every leaf node in both trees and compare them. This

83

6. Evaluation

setup illustrates the worst-case scenario. Usually, real-life scenarios will enable the
diffing algorithm to skip large parts of the tree as soon as a node has referential equality
compared to the other tree.

With this difference between real-life and modeled worst-case scenario in mind, we present
the actual benchmark numbers. The benchmark measures how fast the diffing algorithm
can process leaf nodes. These leaf nodes correspond to the actual values in the system’s
model, while the inner nodes are just structural nodes. In Figure 6.6, we see the number
of such leaf nodes that the diffing algorithm can process per millisecond if it has to
investigate them and can not use early exits. To get a notion about what these numbers
mean for the system, we will now calculate how many changes the model may contain
maximally to produce 60 frames per second reliably. We start with the duration of one
frame at 60 frames/s, which is 16. ˙6 milliseconds. Given this time interval, we have to
multiply the values from Figure 6.6 with it to arrive at the number of nodes for a ballpark
figure. For example, we take the measurements for the tree with a depth of five.

The Chrome measurement is 7 809 nodes per millisecond, so we get 7 809 ∗ 16. ˙6 ≈ 130 150

nodes. In comparison, Firefox has a value of 5 003 nodes per millisecond, resulting in
5 003 ∗ 16. ˙6 ≈ 83 383 nodes. As an example use case, we take a scenario where positions
of objects are updated every frame through the model system. A position comprises
three values: x, y, and z. So every position uses three value nodes. Consequently, we
can arrive at the number of objects we could continuously update every frame on our
testing machine by dividing the former numbers by three. With Chrome, we could handle
43 383 objects, and with Firefox, 27 794. Even with this conservative estimate with a
relatively high depth, the numbers of simultaneous changes our system can support are
very assuring. In reality, most visualizations will probably have a lower depth than five,
and their changes per frame will be far lower than the tens of thousands of changes we
could support. For example, the highest number of changes per frame in the use cases of
Section 6.1 is six, three values for the position, and three values for the rotation, which
is four orders of magnitude smaller than the numbers in the benchmarks. Note that
benchmark numbers do not mean that there can only be so many values in the final
model. The measured bounds only represent the changes. Nor does that mean that
these bounds limit the data displayed in our system in any way. After all, a non-naive
implementation of the moving objects example would not store the position values as
discrete elements in the model but instead as an array. Then this whole array would only
comprise one value, and thereupon correspond to only one change. Hence, thousands of
such arrays could be handled by the system per frame, at least by the diffing algorithm.

One aspect remains for evaluating the diffing algorithm, namely the generation of the
change-set itself. As described in Section 5.1, the change-set can vary from being a single
enum value to a complex object with the same structure as both models. Although the
generation time is already included in the benchmark numbers of Figure 6.6, analyzing
this process separately gives further insight into the JavaScript implementations’ specifics.
Therefore, we measure only the generation time of a tree with the same structure and
size as the input trees. As the tree generation is also the performance bottleneck of

84

6.2. Performance Evaluation

Section 6.2.1, the measurement serves a dual purpose by adding numerical evidence to
the previous subsection’s arguments.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0

20,000

40,000

60,000

80,000

tree depth

le
af

no
de

s
/

m
ill

is
ec

on
d

(m
s)

Chrome
Firefox

Figure 6.7: Number of leaf nodes that can be generated per millisecond compared to the
tree depth.

Analogous to Figure 6.6, Figure 6.7 shows the median number of leaf nodes per millisecond
in relation to the tree depth for generating a respective tree. An exponential decay
curve is expected because of the relationship between the inner nodes and our symmetric
trees’ leaf nodes. Nonetheless, Figure 6.7 shows something quite peculiar. Although the
difference calculations in Figure 6.6 were faster for Chrome in all instances, except for
the depth 1 special case, tree generation time is running faster with Firefox except for
the depth cases 5 to 7. Especially the low depths 1 to 3 are way faster with Firefox
than Chrome. This phenomenon raises the question why Chrome is still faster than
Firefox concerning the complete difference calculations even though the tree generation
is an integral part of it. The other operations that the tree generation does are calling a
recursive algorithm, traversing a tree, chasing pointers, and making equality comparisons.
Hence, we conclude that these operations must be even faster so that, in total, they
compensate the speed penalty that Chrome has in generating the change-set.

Furthermore, the numbers in Figure 6.7 give an estimate of the model’s maximum size
without reused objects inside the update step. The resulting subset of the model is
the subset that carries all structural and value updates. Comparing Figure 6.7 with
Figure 6.6 shows, that the model’s size can almost be an order of magnitude larger than

85

6. Evaluation

the change-set computation allows. Consequently, the plot proves that the difference
calculation is indeed the stricter bound of our system’s performance.

Summarizing, given the benchmarks, we can now accurately judge our system’s capa-
bilities. Even with conservative problem sizes, these capabilities suffice for expected
real-world uses.

6.2.3 Overhead for applying Changes

If the diffing algorithm detects changes, the resulting change-set (benchmarked in Sec-
tion 6.2.2) travels through the pipeline and causes reactions from the modules, which in
turn changes the mutable data store, i.e., the view. Compared to handcrafted systems,
the overhead introduced here is due to the dynamic mapping of change handlers to the
change-set. During runtime, our system has to evaluate which change handlers to execute,
given an arbitrarily complex change-set. When a property at depth = d exists, but no
corresponding change handler, the system has to look into the change handlers on level
d− 1 and so on until a matching change handler is found.

This behavior is illustrated, for example, by the color change handler from Listing 6.5,
Line 95 to Line 97. If somebody edits only the color’s red value, the system does not
find a direct change handler for that. Instead, it has to go one level higher where it finds
the change handler for the whole color, which it then calls.

In general, the number of changes to be applied is bounded by the change-set itself.
Furthermore, the overhead per change is dependent on the module that handles the
change. The module should be optimized in such a way that the change handlers fit
to the occurrence and size of the changes inside it. For example, if a module expects
changes inside its leaves, the change handlers should form a similar structure, with view
functions in the leaves (see Section 5.7.2). Conversely, if changes always deliver entirely
new models, it might not make sense to create fine-grained change handlers and instead
use a single view function as change handler.

Concluding, the performance of applying changes to the underlying view data structures
depends on the granularity of the change handlers. Whenever changes are managed by a
corresponding change handler directly, no significant runtime overhead is introduced. If
a handler cannot manage the change directly, the system needs to fall back to a coarser
change handler. Optimizations and the trade-off between expensive coarse-grained
changes and numerous micro-changes need to be taken care of by the module author.

Therefore, our system’s architecture does not introduce a direct overhead, but rather the
modules themselves if they are not optimally implemented in relation to the changes
they encounter during runtime. In conclusion, the overhead for applying changes falls
into the module author’s responsibility and not into the system’s internal overhead.

86

6.3. External Evaluation

6.3 External Evaluation

At the beginning of this external evaluation, we want to note that our system is not
designed as a direct replacement for any existing system. Instead, it aims to fill a niche
that other systems do not cover. As seen in Section 6.1.3 with the example of Vega-Lite,
our system is also capable of creating an overarching structure for combining existing
visualization tools under a common framework.

The prominent use case for our system is the usage as a communication medium for
visualizations. Another benefit is the creation of visualizations without in-depth knowledge
about computer graphics, which enables quick prototyping capabilities. Additionally, our
system gives visualization designers the ability to create modules for custom domain-
specific visualization use cases. Domain experts can then use these custom modules for
their specific visualization needs.

For sharing visualizations and quick prototyping, a popular tool in the scientific community
are Jupyter notebooks, as mentioned in Chapter 1. Although Jupyter notebooks are stored
in JSON files, most notebooks use Python as a scripting language instead of JavaScript.
As a result, libraries like Altair [Dev19] offer methods for creating visualizations using the
Vega-Lite syntax in Python. However, our system focuses on interactive 3D visualizations.
There also exist Python libraries that offer interactive 3D capabilities like for Jupyter
notebooks like Matplotlib [HDF+21] and IPyvolume [Bre17]. Both of these libraries,
however, use an imperative design with rigid, predefined functions. Instead, our approach
is modular, declarative, and allows custom interactions.

Another difference between these solutions is, that our system is self-contained inside the
JSON file. In contrast, Matplotlib and IPyvolume exist in Python snippets that themselves
need to be included inside a Jupyter notebook. Nevertheless, because the native format
of Jupyter notebooks is JSON, our language can be easily integrated. Therefore, users
can even combine the libraries’ strengths by using Matplotlib or IPyvolume when quick,
imperative plotting is preferred, and our system when a declarative approach, modularity,
and custom interactions are needed.

Performance-wise, IPyvolume uses the same framework as our system in the backend, i.e.,
Three.js, to create a WebGL visualization. Therefore, the performance differs only on the
CPU site covering the visualization logic. Hence, the analysis from Section 6.2 applies.

The second category we evaluate our system against are tools that visualization designers
can use to craft environments where domain experts can create and modify visualizations
related to their domain. As described in Section 2.4, examples of such tools are MeVisLab
and Inviwo. Both systems support the creation of highly configurable visualizations
through network interfaces. Since these systems are both native applications written in
C++, the compiled code has a lower abstraction level than the interpreted JavaScript
code.

A drawback of MeVisLab and Inviwo is the use of proprietary file formats for the
visualizations. Instead, our DSL is defined inside JSON files, which numerous existing

87

6. Evaluation

tools and languages can directly use and manipulate. In combination with the fact that
our system can be integrated as a JavaScript library, our visualization system has a lower
threshold for users to act as a visualization exchange format.

In general, native visualization systems need to be installed locally first, while users
can directly access our system in the web browser. Not only does this complicate the
initial time of opening such a visualization, but it also brings the problems of platform
dependence with it.

In summary, while our system might not be the most performant compared to native
applications, it offers high accessibility and shareability through its embedding in the
web ecosystem.

88

CHAPTER 7
Conclusion

7.1 Contribution

In this thesis, we proposed a novel domain-specific language. It enables the definition
of 3D visualizations and the creation of custom interactions without knowledge about
computer-graphics concepts such as buffers or shaders. The expressiveness of the DSL
enables users to configure all stages of the visualization pipeline. Furthermore, our
language forms a dynamic visualization description inside the JSON format, aiding the
shareability of 3D visualizations.

Furthermore, we developed a modular system that can be manipulated using the DSL.
Our system allows users to extend the language themselves by creating new modules.
These generically reuseable modules were made possible through the type system. As
such, our language has a modular semantic instead of a fixed set of instructions.

We integrated the DSL and the visualization system into a visualization creation environ-
ment. It shows the visualization itself plus the system’s current state as DSL and updates
it accordingly when changes appear. With this environment, users can easily explore the
language, modify values, create new interactions, and observe the updates taking place
inside the system. Additionally, users can take snapshots of the visualization’s current
appearance by copying the DSL. We achieved this functionality through the system’s
immutable state, an aspect influenced by functional paradigms.

We further explored how a visualization system on the web can look like that handles a
declarative DSL while interfacing with an imperative environment. With this interface,
we bridged the gap between the immutable visualization snapshot represented in the
DSL and the imperative implementation of the used graphics library.

We showed the versatile capabilities of our system by exploring various aspects of it with
case studies. These case studies ranged from simple examples of custom modules to

89

7. Conclusion

data visualizations of real use cases. They also contained an example of integration with
another visualization framework, i.e., Vega, which highlighted our system’s modularity.
Finally, we performed quantitative benchmarks and theoretical analyses of the additional
overhead our language introduces.

7.2 Lessons Learned

With TypeScript as our language of choice for the system, we can use modern ECMAScript
functionalities like the ...-operator. However, compiling such modern syntax features
to older JavaScript versions often results in bloated and potentially inefficient code. For
example, using the ...-rest-operator when providing function arguments compiles to
a loop executing successive apply calls. This backward-compatible compilation also
confuses the JavaScript debuggers and thus complicates the debugging process.

Additionally, even though we get static types with TypeScript, our system’s dynamic
nature requires us to inspect types during runtime continually. This problem gets even
further aggravated because checking whether a variable contains an object or a value
type requires string comparisons. As we do not know how models change between
pipeline invocations, we must execute such string comparisons frequently inside the
diffing algorithm and at other places in the code. Consequently, our system could be
even faster without these drawbacks.

7.3 Future Work

One approach to alleviate the problems of Section 7.2 could be to implement the system’s
performance-critical bottlenecks like the diffing algorithm or the pipeline execution, in
web assembly. Such an implementation could also ease integrating modules programmed
in other languages having web assembly as compile target.

Another area for further research is the module system we envisioned. We set out with a
module as a simple function taking input and providing an output. However, more and
more of our guarantees required constructs where data and instructions interact and thus
needed ever tighter relations. We forced a separation between the two, and in the final
implementation, the update and view functions have no direct notion to which module
they belong. Sometimes this separation seems unintuitive, and indeed it might make
sense to provide a reference of the module itself to those functions. The alternative to
this separation would be to handle the modules as classes. Such a change would probably
also add additional compile-time enforcements and type checks from TypeScript as they
are a prominent feature of the language.

90

List of Figures

1.1 Various charts created with Vega, which uses D3 for rendering. 2
1.2 Different uses of the notebook environment. 4
1.3 The visualization-creation environment. The DSL on the left describes the

volume visualization on the right, which shows the stag beetle dataset from
Gröller et al. [GGK05]. Textual changes in the DSL (left) are reflected in
the visualization (right) and interactions with the visualization automatically
update the DSL. 5

2.1 Experience hierarchy of configurable software. 8
2.2 Example of how slangs (left) interact through the vislang runtime with the

program editor (middle) to produce an interative visualization (right). . . 8
2.3 Examples of graphical marks from ProtoVis: (a-h) Area, Bar, Dot, Image,

Line, Label (and Bar), Rule (and Bar), Wedge. 10
2.4 Example definition of a simple, interactive bar chart using ProtoVis JavaScript

(a) and Java (b). 11
2.5 Comparison of drawing a simple pie chart in ProtoVis (a) and D3 (b). . . 14
2.6 Vega specification of a bar chart. The data is referenced through an a

URL. The scales and marks fields define how data is mapped to the visual
representation. 16

2.7 Different examples of event-selectors for filtering a stream. 18
2.8 Vega-Lite specification of a simple line chart showing the monthly aggregated

mean temperature in two cities. 20
2.9 The communication flow between Elm and the browser. 21
2.10 A visualization inside the MeVisLab system. With the GUI, the network

graph responsible for the visualization can be modified. 23
2.11 Inviwo application showing the configurable node-based flow diagram that

creates a volume visualization. 24

4.1 The interactive visualization-creation environment consisting of the DSL (left)
that describes a visualization which the modular visualization system (middle)
reads, producing the interactive visualization (right). Interactions with the
visualization trigger changes to the DSL, while changes to the DSL by the
user trigger immediate updates to the visualization. 30

4.2 The event loop of the visualization system. 30

91

4.3 The final output contains all previous results because of row polymorphism. 33
4.4 A pipeline of linked modules. These modules can recursively contain sub-

modules creating a hierarchical pipeline. 34
4.5 The two pipeline tracks: model and view. 36
4.6 A change-set of two example models, Mold and Mnew. 37
4.7 The message queue, in which modules as well as other processes like DOM

elements enqueue messages. 38

5.1 Implementation-centric overview of our system from Figure 4.1. The system
handles the event loop and communicates with the core module, which dele-
gates tasks like rendering and message processing down the pipeline where
modules and meta modules operate in a user-defined sequence. 40

6.1 Case Study #1, Sphere. The left side shows the visualization description
(enlarged in Listing 6.6), while the right side shows the resulting render-
ing. Changes to the description are immediately reflected in an updated
visualization and vice versa. 61

6.2 Case study #2, Volume. The DSL on the left side (enlarged in Listing 6.7)
defines the volume’s data source as well as texture used for the transfer
function. The right side shows the final visualization of the stag beetle dataset
from Gröller et al. [GGK05]. 68

6.3 Case study #3, Point Cloud. The DSL on the left (enlarged in Listing 6.8)
includes a full Vega-Lite description as well as encoding functions that trans-
form the referenced point cloud data into the visualization on the right. The
visualization shows the 3D point cloud as well as the Vega-Lite 2D chart
resulting in a linked view, which links the brushing (visualized in yellow). . 71

6.4 Speed of the diffing algorithm on the Chrome browser for tree variations from
Table 6.1, including varying percentages of change. 80

6.5 Speed of the diffing algorithm on the Firefox browser for tree variations from
Table 6.1, including varying percentages of change. 81

6.6 Number of leaf nodes the diffing algorithm (see Section 5.1) can compute per
millisecond compared to the tree depth of the model. 83

6.7 Number of leaf nodes that can be generated per millisecond compared to the
tree depth. 85

92

List of Tables

6.1 Tree variations and their node counts for a benchmark analyzing the impact
of the change between the trees. 78

6.2 Tree variations and their node counts for a benchmark thoroughly analyzing
the impact of the tree depth on the diffing time. 82

93

List of Algorithms

5.1 Diffing algorithm for computing the change-set between two input models. 42

5.2 Resolving the view functions for a given change-set C. 52

95

List of Listings

3.1 Grammar of JSON in EBNF form based on the JSON specification
[ECM21]. 28

5.1 Type definition of the change-set. 41
5.2 Type definition of the emitter with the emit function. 43
5.3 Emitting a message when a click happens. 43
5.4 A simple box and sphere model definition. 46
5.5 Update and view function type definition. 48
5.6 Type definition of the update handler. 49
5.7 Example of an implemented update handler. 49
5.8 Type definition of view handler. 50
5.9 Example of an implemented view handler. 51
5.10 Type definition of the parser. 54
5.11 Possible input DSLs for the simple sphere model of Listing 5.4b. . . . 55
5.12 Different parser implementations for a simple sphere model. 55
5.13 Type definition of the unparser. 56
6.1 Type definition of the model and view of the sphere module. The first

type defines all properties needed to define the scene, while the second
one represents all data structures needed for rendering the view. . . . 62

6.2 Type definition of the module type for the sphere module. All the needed
type information for the module is supplied: The types of the messages it
handles, a reference to its model and view type, and references to external
models and views that are required. 62

6.3 Initial model and view for the sphere module. The initial model is a
standard object, while the initial view is a function taking the model and
other dependencies as input. 63

6.4 Parser and unparser of the sphere module. Recursively, the parser contains
all information to provide the complete model, in this case by having a
parsing function for each field. 64

6.5 Module definition of the sphere module. Here, all the implementation logic
of the module, enfoced by its type from Listing 6.2, must be supplied. 65

6.6 DSL for describing the sphere visualization. It specifies information about
the camera’s orientation, the sphere module as defined in this section,
custom events, and the pipeline. 66

97

6.7 DSL for describing the volume visualization. It specifies the source and
visualization method for the volume data, paths to textures for the transfer
functions, and finally camera and pipeline information. 70

6.8 DSL for describing the point cloud visualization. It contains a full Vega-

Lite specification. It further describes encoding functions for the point
cloud data as well as camera attributes and a pipeline description. . . 73

98

Acronyms

API Application programming interface. 3, 13, 22, 27, 36

CPU Central processing unit. 22, 79

CSS Cascading Style Sheets. 13, 17

DOM Document Object Model. 12, 13, 14, 15, 21, 31, 35, 38, 43, 61, 92

DSL Domain-specific language. 3, 5, 7, 8, 9, 12, 25, 27, 28, 29, 30, 31, 33, 34, 35, 44, 45,
47, 54, 55, 56, 57, 59, 60, 61, 63, 66, 67, 68, 69, 70, 71, 72, 74, 75, 77, 83, 87, 89, 91,
92, 97

EBNF Extended Backus–Naur form. 27, 28, 97

FIFO first in, first out. 38, 43

GPU Graphics processing unit. 2, 9, 22, 31, 35, 61, 64, 69, 79

GUI Graphical user interface. 15, 22, 23, 36, 38, 57, 91

HTML Hypertext Markup Language. 13, 15, 20, 21

I/O Input/Output. 31

JSON JavaScript Object Notation. 2, 15, 27, 28, 33, 34, 57, 68, 70, 72, 87, 89, 97

REST Representational state transfer. 27

SVG Scalable Vector Graphics. 13, 14, 15

URL Uniform Resource Locator. 16, 72, 91

W3C World Wide Web Consortium. 13

XML Extensible Markup Language. 13

99

Bibliography

[Abr21] Dan Abramov. Redux. https://redux.js.org/, 2021. Accessed: 2021-
03-30.

[AG21] MeVis Medical Solutions AG. mevislab. https://www.mevislab.de/,
2021. Accessed: 2021-04-02.

[aut21] Graphviz authors. The dot language. https://www.graphviz.org/

doc/info/lang.html, 2021. Accessed: 2021-01-26.

[BH09] Michael Bostock and Jeffrey Heer. Protovis: A graphical toolkit for vi-
sualization. IEEE Transactions on Visualization and Computer Graphics,
15(6):1121–1128, 2009.

[BOH11] Michael Bostock, Vadim Ogievetsky, and Jeffrey Heer. D3 data-driven
documents. IEEE Transactions on Visualization and Computer Graphics,
17(12):2301–2309, 2011.

[BRC+19] Rene Brun, Fons Rademakers, Philippe Canal, Axel Naumann, Olivier Couet,
Lorenzo Moneta, Vassil Vassilev, Sergey Linev, Danilo Piparo, Gerardo GA-
NIS, Bertrand Bellenot, Enrico Guiraud, Guilherme Amadio, wverkerke,
Pere Mato, TimurP, Matevž Tadel, wlav, Enric Tejedor, Jakob Blomer,
Andrei Gheata, Stephan Hageboeck, Stefan Roiser, marsupial, Stefan Wun-
sch, Oksana Shadura, Anirudha Bose, CristinaCristescu, Xavier Valls, and
Raphael Isemann. root-project/root: v6.18/02, August 2019.

[Bre17] Maarten A. Breddels. https://ipyvolume.readthedocs.io, 2017.
Accessed: 2021-04-03.

[CC13] Evan Czaplicki and Stephen N Chong. Asynchronous functional reactive
programming for guis. In Proceedings of the 34th ACM SIGPLAN Conference

on Programming Language Design and Implementation-PLDI’13. ACM
Press, 2013.

[CER20] CERN. https://swan.web.cern.ch, 2020. Accessed: 2020-12-15.

[CMS99] Stuart K. Card, Jock D. Mackinlay, and Ben Shneiderman. Readings in

Information Visualization: Using Vision to Think. Morgan Kaufmann, 1999.

101

https://redux.js.org/
https://www.mevislab.de/
https://www.graphviz.org/doc/info/lang.html
https://www.graphviz.org/doc/info/lang.html
https://ipyvolume.readthedocs.io
https://swan.web.cern.ch

[Con20] Web3D Consortium. https://www.web3d.org, 2020. Accessed: 2021-
03-24.

[Cza12] Evan Czaplicki. Elm: Concurrent frp for functional guis. Senior thesis,

Harvard University, 30, 2012.

[Cza20] Evan Czaplicki. https://elm-lang.org/, 2020. Accessed: 2020-12-15.

[Dev19] Altair Developers. https://altair-viz.github.io/, 2019. Accessed:
2021-04-03.

[Dis20] Distill. https://distill.pub, 2020. Accessed: 2020-12-15.

[ECM21] ECMA. Ecma-404, the json data interchange syntax, 2nd edition, decem-
ber 2017. https://www.ecma-international.org/wp-content/

uploads/ECMA-404_2nd_edition_december_2017.pdf, 2021. Ac-
cessed: 2021-02-11.

[EH97] Conal Elliott and Paul Hudak. Functional reactive animation. In Proceedings

of the second ACM SIGPLAN International Conference on Functional

programming, pages 263–273, 1997.

[Fjc21] OpenJS Foundation and jQuery contributors. jquery. https://jquery.
com/, 2021. Accessed: 2021-03-26.

[Fow04] Martin Fowler. Inversion of control containers and the dependency injection
pattern. https://www.martinfowler.com/articles/injection.

html, 2004. Accessed: 2021-02-04.

[GGK05] Eduard Gröller, Georg Glaeser, and Johannes Kastner. Stag bee-
tle. https://www.cg.tuwien.ac.at/research/publications/

2005/dataset-stagbeetle/, 2005.

[HB10] Jeffrey Heer and Michael Bostock. Declarative language design for interactive
visualization. IEEE Transactions on Visualization and Computer Graphics,
16(6):1149–1156, 2010.

[HDF+21] John Hunter, Darren Dale, Eric Firing, Michael Droettboom, and the Mat-
plotlib development team. http://matplotlib.org, 2021. Accessed:
2021-04-03.

[HSP09] Frank Heckel, Michael Schwier, and Heinz-Otto Peitgen. Object-oriented
application development with mevislab and python. Informatik 2009–Im

Focus das Leben, 2009.

[Inc21] Facebook Inc. React. https://reactjs.org/, 2021. Accessed: 2021-
03-30.

102

https://www.web3d.org
https://elm-lang.org/
https://altair-viz.github.io/
https://distill.pub
https://www.ecma-international.org/wp-content/uploads/ECMA-404_2nd_edition_december_2017.pdf
https://www.ecma-international.org/wp-content/uploads/ECMA-404_2nd_edition_december_2017.pdf
https://jquery.com/
https://jquery.com/
https://www.martinfowler.com/articles/injection.html
https://www.martinfowler.com/articles/injection.html
https://www.cg.tuwien.ac.at/research/publications/2005/dataset-stagbeetle/
https://www.cg.tuwien.ac.at/research/publications/2005/dataset-stagbeetle/
http://matplotlib.org
https://reactjs.org/

[JSS+19] Daniel Jönsson, Peter Steneteg, Erik Sundén, Rickard Englund, Sathish
Kottravel, Martin Falk, Anders Ynnerman, Ingrid Hotz, and Timo Ropin-
ski. Inviwo - a visualization system with usage abstraction levels. IEEE

Transactions on Visualization and Computer Graphics, 26(11):3241–3254,
2019.

[JSS+20] Daniel Jönsson, Peter Steneteg, Erik Sundén, Rickard Englund, Sathish
Kottravel, Martin Falk, Anders Ynnerman, Ingrid Hotz, and Timo Ropinski.
https://inviwo.org/, 2020. Accessed: 2020-12-15.

[KLM+97] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina
Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-oriented programming.
In European Conference on Object-Oriented Programming, pages 220–242.
Springer, 1997.

[Knu84] Donald Ervin Knuth. Literate programming. The Computer Journal,
27(2):97–111, 1984.

[KP88] Glenn Krasner and Stephen Pope. A coolbook for using the model-view-
controller user interface paradigm in smalltalk-80. Journal of Object-Oriented

Programming, 1(3):26–49, 1988.

[KRKP+16] Thomas Kluyver, Benjamin Ragan-Kelley, Fernando Pérez, Brian E Granger,
Matthias Bussonnier, Jonathan Frederic, Kyle Kelley, Jessica B Hamrick,
Jason Grout, Sylvain Corlay, et al. Jupyter notebooks-a publishing format
for reproducible computational workflows. In ELPUB, pages 87–90, 2016.

[Mor12] Kenneth Moreland. A survey of visualization pipelines. IEEE Transactions

on Visualization and Computer Graphics, 19(3):367–378, 2012.

[MRNL20] Alexander Mordvintsev, Ettore Randazzo, Eyvind Niklasson, and
Michael Levin. Growing neural cellular automata. Distill, 2020.
https://distill.pub/2020/growing-ca.

[NCP02] Henrik Nilsson, Antony Courtney, and John Peterson. Functional reactive
programming, continued. In Proceedings of the 2002 ACM SIGPLAN

workshop on Haskell, pages 51–64, 2002.

[PG15] Fernando Perez and Brian E Granger. Project jupyter: Computational
narratives as the engine of collaborative data science. http://archive.
ipython.org/JupyterGrantNarrative-2015.pdf, 2015. Accessed:
2021-03-24.

[RBGH14] Peter Rautek, Stefan Bruckner, M Eduard Gröller, and Markus Hadwiger.
Vislang: A system for interpreted domain-specific languages for scientific
visualization. IEEE Transactions on Visualization and Computer Graphics,
20(12):2388–2396, 2014.

103

https://inviwo.org/
http://archive.ipython.org/JupyterGrantNarrative-2015.pdf
http://archive.ipython.org/JupyterGrantNarrative-2015.pdf

[RBH+11] Felix Ritter, Tobias Boskamp, André Homeyer, Hendrik Laue, Michael
Schwier, Florian Link, and H-O Peitgen. Medical image analysis. IEEE

pulse, 2(6):60–70, 2011.

[Rea89] Chris Reade. Elements of functional programming. Addison-Wesley Longman
Publishing Co., Inc., 1989.

[SMWH15] Arvind Satyanarayan, Dominik Moritz, Kanit Wongsuphasawat, and Jeffrey
Heer. movies.json dataset. https://vega.github.io/vega-lite/

examples/data/movies.json, 2015. Accessed: 2021-03-31.

[SMWH16] Arvind Satyanarayan, Dominik Moritz, Kanit Wongsuphasawat, and Jeffrey
Heer. Vega-lite: A grammar of interactive graphics. IEEE Transactions on

Visualization and Computer Graphics, 23(1):341–350, 2016.

[SRHH15] Arvind Satyanarayan, Ryan Russell, Jane Hoffswell, and Jeffrey Heer. Re-
active vega: A streaming dataflow architecture for declarative interactive
visualization. IEEE Transactions on Visualization and Computer Graphics,
22(1):659–668, 2015.

[STH02] Chris Stolte, Diane Tang, and Pat Hanrahan. Polaris: A system for query,
analysis, and visualization of multidimensional relational databases. IEEE

Transactions on Visualization and Computer Graphics, 8(1):52–65, 2002.

[Str09] Milan Straka. Optimal worst-case fully persistent arrays. Trends in Func-

tional Programming, 2009.

[SWH14] Arvind Satyanarayan, Kanit Wongsuphasawat, and Jeffrey Heer. Declarative
interaction design for data visualization. In Proceedings of the 27th annual

ACM Symposium on User Interface Software and Technology, pages 669–678.
ACM, 2014.

[W3C17] W3C. Xsl transformations (xslt) version 3.0. https://www.w3.org/TR/
xslt-30/, 2017. Accessed: 2021-03-26.

[Wan91] Mitchell Wand. Type inference for record concatenation and multiple
inheritance. Information and Computation, 93(1):1–15, 1991.

[Wic10] Hadley Wickham. A layered grammar of graphics. Journal of Computational

and Graphical Statistics, 19(1):3–28, 2010.

[Wil12] Leland Wilkinson. The grammar of graphics. In Handbook of Computational

Statistics, pages 375–414. Springer, 2012.

[WTH01] Zhanyong Wan, Walid Taha, and Paul Hudak. Event-driven frp. Lecture

Notes in Computer Science, 2257, 12 2001.

104

https://vega.github.io/vega-lite/examples/data/movies.json
https://vega.github.io/vega-lite/examples/data/movies.json
https://www.w3.org/TR/xslt-30/
https://www.w3.org/TR/xslt-30/

	Kurzfassung
	Abstract
	Contents
	Introduction
	Related Work
	Domain-Specific Languages for Visualization
	Visualization Systems for the Web
	Functional GUI Frameworks on the Web
	Visualization Systems for Domain Experts

	Language Design
	Design Goals
	Language Definition

	System Design
	Overview
	The Module - an Atomic Unit of Functionality
	The Pipeline - a Sequence of Computation
	The Model - an immutable Bag of Data
	The View - an Interface to the Outer World
	The Change-set - a Difference of Models
	The Message-queue - an Order of Communication

	Implementation
	Computing the Change-set
	Managing Messages
	The Core Module
	Meta Modules
	Guaranteeing a Valid Model
	Path Resolution
	Module Handling
	Parsing

	Evaluation
	Use-case Study
	Performance Evaluation
	External Evaluation

	Conclusion
	Contribution
	Lessons Learned
	Future Work

	List of Figures
	List of Tables
	List of Algorithms
	List of Listings
	Acronyms
	Bibliography

